
检测结果

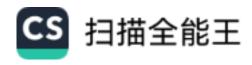
报告编号 A2230677304104C

样品编号		检测项目		结果
		Cin)	对、间二甲苯的实 测浓度 mg/m³	ND
	(CI)		对、间二甲苯的排 放速率 kg/h	, 6
HFR91607240	-05	第 4 次 (2025-09-28)	邻二甲苯的实测 浓度 mg/m³	ND
			邻二甲苯的排放 速率 kg/h	(F) 1
			实测浓度 mg/m³	ND
			排放速率 kg/h	/
cri)	(cri)	(4)	对、间二甲苯的实 测浓度 mg/m³	ND (
			对、间二甲苯的排 放速率 kg/h	/
HFR91607237/238 /239/240	二甲苯	平均值 (2025-09-28)	邻二甲苯的实测 浓度 mg/m³	ND
			邻二甲苯的排放 速率 kg/h	,
			实测浓度 mg/m³	ND
			排放速率 kg/h	1 (4)
	(0.)	(0.)	对、间二甲苯的实 测浓度 mg/m³	ND
			对、间二甲苯的排 放速率 kg/h	
HFR91607241	(6,1,	第 5 次 (2025-09-28)	邻二甲苯的实测 浓度 mg/m³	ND
	/05		邻二甲苯的排放 速率 kg/h	1
41)	(41)		实测浓度 mg/m³	ND
			排放速率 kg/h	1

检测结果

报告编号 A2230677304104C

样品编号		检测项目		结果
		(ii)	对、间二甲苯的实 测浓度 mg/m³	ND
			对、间二甲苯的排 放速率 kg/h	, 6
HFR91607242	(*)	第 6 次 (2025-09-28)	邻二甲苯的实测 浓度 mg/m³	ND
(2/1)	(CL)		邻二甲苯的排放 速率 kg/h	
			实测浓度 mg/m³	ND
			排放速率 kg/h	/
cil	(cfi)		对、间二甲苯的实 测浓度 mg/m³	ND (
			对、间二甲苯的排 放速率 kg/h	/
HFR91607243	二甲苯	第7次 (2025-09-28)	邻二甲苯的实测 浓度 mg/m³	ND
			邻二甲苯的排放 速率 kg/h	
-0.5	400		实测浓度 mg/m³	ND
(1)			排放速率 kg/h	1 (4)
	(0.)	(6)	对、间二甲苯的实 测浓度 mg/m³	ND
			对、间二甲苯的排 放速率 kg/h	/** /
HFR91607244		第 8 次 (2025-09-28)	邻二甲苯的实测 浓度 mg/m³	ND
	405		邻二甲苯的排放 速率 kg/h	/
(1)			实测浓度 mg/m³	ND
5	6.		排放速率 kg/h	, 6



检测结果

报告编号 A2230677304104C

样品编号		检测项目		结果
		CiD	对、间二甲苯的实 测浓度 mg/m³	ND
	(6,1)		对、间二甲苯的排 放速率 kg/h	, 6
HFR91607241/242 /243/244	-05	平均值 (2025-09-28)	邻二甲苯的实测 浓度 mg/m³	ND
			邻二甲苯的排放 速率 kg/h	
			实测浓度 mg/m³	ND
			排放速率 kg/h	/
(1)	(cil)	(4)	对、间二甲苯的实 测浓度 mg/m³	ND (
			对、间二甲苯的排 放速率 kg/h	/
HFR91607245	二甲苯	第 9 次 (2025-09-28)	邻二甲苯的实测 浓度 mg/m³	ND
			邻二甲苯的排放 速率 kg/h	,
			实测浓度 mg/m³	ND
(II)			排放速率 kg/h	1 (4)
	(0,	(6.)	对、间二甲苯的实 测浓度 mg/m³	ND
	C'S		对、间二甲苯的排 放速率 kg/h	/
HFR91607246	(0,1)	第 10 次 (2025-09-28)	邻二甲苯的实测 浓度 mg/m³	ND
			邻二甲苯的排放 速率 kg/h	1
	(27)		实测浓度 mg/m³	ND
			排放速率 kg/h	/ 🔍

检测结果

报告编号 A2230677304104C

样品编号		检测项目		结果	
	Cin)	Cin	对、间二甲苯的实 测浓度 mg/m³	ND	13
37)			对、间二甲苯的排 放速率 kg/h	/	
HFR91607247		第 11 次 (2025-09-28)	邻二甲苯的实测 浓度 mg/m³	ND	
		(c)	邻二甲苯的排放 速率 kg/h		
			实测浓度 mg/m³	ND	
			排放速率 kg/h	1	
		(4)	对、间二甲苯的实 测浓度 mg/m³	ND	6
			对、间二甲苯的排 放速率 kg/h	/	
HFR91607248	二甲苯	第 12 次 (2025-09-28)	邻二甲苯的实测 浓度 mg/m³	ND	
			邻二甲苯的排放 速率 kg/h	,	
0		-07	实测浓度 mg/m³	ND	- 10
(1)			排放速率 kg/h	/	(1
		(6.)	对、间二甲苯的实 测浓度 mg/m³	ND	
		(2)	对、间二甲苯的排 放速率 kg/h		
HFR91607245/246 /247/248		平均值 (2025-09-28)	邻二甲苯的实测 浓度 mg/m³	ND	
			邻二甲苯的排放 速率 kg/h	/	
40)		(41)	实测浓度 mg/m³	ND	6
2)			排放速率 kg/h	1	6

1."ND"表示未检出。

2."/"表示检测项目的实测浓度小于检出限,故排放速率无需计算。

检测结果

报告编号 A2230677304104C

第 48 页 共 91 页

表 11:

样品信息:						
样品类型	工业废气(有组织)	(67)	(67)			(6)
采样点位名称	盐酸储罐呼吸废气排放口 DA006					
采样日期	2025-09-25 2025-09-26	检测日期	2025-	09-26~2025	5-09-28	
排气筒高度/m	15	样品状态	完好		0	
检测结果:		(2	(4)	(6	10)	
样品编号		检测项目		10	结果	
HFR91607477		第 1 次 (2025-09-25)	实测浓度 m	ng/m³	0.23	
HFR91607478	(1)	第 2 次 (2025-09-25)	实测浓度 m	ng/m³	14.6	(3)
HFR91607479	50.5	第 3 次 (2025-09-25)	实测浓度 m	ng/m³	27.0	
HFR91607480	氯化氢	第 1 次 (2025-09-26)	实测浓度 m	ng/m³	11.6	
HFR91607481		第 2 次 (2025-09-26)	实测浓度 m	ng/m³	27.1	
HFR91607482		第 3 次 (2025-09-26)	实测浓度 m	ng/m³	19.0	(2)


检测结果

报告编号 A2230677304104C

第 49 页 共 91 页

表 12:

样品信息:						
样品类型	焚烧炉废气	(6	()	(62)		(6)
采样点位名称	危废焚烧炉尾气	【排放口 DA002				-
采样日期	2025-09-27 20	25-09-28	检测日期	2025-09-2	27~2025-10-11	
排气筒高度/m	35	-0-	样品状态	完好		
检测结果:		(49)	(75)		(20)	
样品编号		检测项			结果	
		tete 1 vie	实测浓度 mg	g/m³	0.00351	
HFR91607177		第1次	折算浓度 mg	g/m³	0.00303	
		(2025-09-27)	排放速率kg	g/h	5.26×10 ⁻⁵	1
5")	R91607178	Mr. a vir	实测浓度 mg	g/m³	0.00181	10
HFR91607178		第 2 次 (2025-09-27)	折算浓度 mg	g/m³	0.00183	
			排放速率 kg	g/h	2.76×10 ⁻⁵	
	1	第 3 次 (2025-09-27)	实测浓度 mg	g/m³	0.00206	
HFR91607179			折算浓度 mg	g/m³	0.00194	
	铅及其化合物		排放速率kg	g/h	2.85×10 ⁻⁵	
	(以Pb计) 第1次 (2025 00 20)	实测浓度 mg	g/m³	0.00110		
HFR91607180		1 1000 1000	折算浓度 mg	g/m³	0.00115	
	(41)	(2025-09-28)	排放速率 kg	g/h	1.80×10 ⁻⁵	(2
		第2次	实测浓度 mg	g/m³	3.61×10 ⁻⁴	16
HFR91607181		第2次 (2025-09-28)	折算浓度 mg	g/m³	3.25×10 ⁻⁴	
		(2025-09-28)	排放速率 kg	g/h	5.50×10 ⁻⁶	
		第3次	实测浓度 mg	g/m³	4.94×10 ⁻⁴	
HFR91607182		(2025-09-28)	折算浓度 mg	g/m³	4.33×10 ⁻⁴	
		(2023-09-28)	排放速率 kg	g/h	7.33×10 ⁻⁶	

检测结果

报告编号 A2230677304104C

第 50 页 共 91 页

样品编号		检测项目		结果
		MA 1 No	实测浓度 mg/m³	4.23×10 ⁻⁵
HFR91607177		第1次 (2025-09-27)	折算浓度 mg/m³	3.65×10 ⁻⁵
(3.7)	(6,7)	(2023-09-27)	排放速率 kg/h	6.33×10 ⁻⁷
		第2次	实测浓度 mg/m³	1.09×10 ⁻⁵
HFR91607178			折算浓度 mg/m³	1.10×10 ⁻⁵
(*)		(2025-09-27)	排放速率 kg/h	1.66×10 ⁻⁷
(20)		第3次	实测浓度 mg/m³	2.41×10 ⁻⁵
HFR91607179		(2025-09-27)	折算浓度 mg/m³	2.27×10 ⁻⁵
镉及其化合物	镉及其化合物	(2023-09-27)	排放速率 kg/h	3.34×10 ⁻⁷
	(以Cd计)	MAS 1 Notes	实测浓度 mg/m³	ND
HFR91607180		第1次 (2025-09-28)-	折算浓度 mg/m³	1 (4
3		(2023-09-28)	排放速率 kg/h	1 (6)
		第2次	实测浓度 mg/m³	ND
HFR91607181		(2025-09-28)	折算浓度 mg/m³	1
		(2023-09-28)	排放速率 kg/h	C. 7
(6,2)		第3次	实测浓度 mg/m³	ND
HFR91607182		(2025-09-28)	折算浓度 mg/m³	1
		(2023-09-28)	排放速率 kg/h	/

检测结果

报告编号 A2230677304104C

第 51 页 共 91 页

样品编号	检测项目		结果
		锑实测浓度 mg/m³	1.65×10 ⁻⁴
O.S.	Cia Ci	锑折算浓度 mg/m³	1.42×10 ⁻⁴
(^)	(6)	锑排放速率 kg/h	2.47×10 ⁻⁶
		铜实测浓度 mg/m³	0.00581
		铜折算浓度 mg/m³	0.00501
		铜排放速率 kg/h	8.70×10 ⁻⁵
		锰实测浓度 mg/m³	0.00204
		锰折算浓度 mg/m³	0.00176
		锰排放速率 kg/h	3.05×10 ⁻⁵
		锡实测浓度 mg/m³	4.07×10 ⁻⁴
100		锡折算浓度 mg/m³	3.51×10 ⁻⁴
5)	(0,)	锡排放速率 kg/h	6.09×10 ⁻⁶
	锡、锑、铜、 第1次	镍实测浓度 mg/m³	7.97×10 ⁻⁴
HFR91607177	锰、镍、钴 (2025-09-27)	镍折算浓度 mg/m³	6.87×10 ⁻⁴
	恤、馀、铂 (2023-09-27)	镍排放速率 kg/h	1.19×10 ⁻⁵
(6,5)	(65)	钴实测浓度 mg/m³	1.77×10 ⁻⁴
		钴折算浓度 mg/m³	1.53×10 ⁻⁴
		钴排放速率 kg/h	2.65×10 ⁻⁶
		实测浓度(锡、锑、铜、 锰、镍、钴及其化合物) mg/m³	0.00940
		折算浓度(锡、锑、铜、 锰、镍、钴及其化合物) mg/m³	0.00810
		排放速率(锡、锑、铜、 锰、镍、钴及其化合物)	1.41×10 ⁻⁴
		kg/h	

检测结果

报告编号 A2230677304104C

第 52 页 共 91 页

样品编号		检测项目		结果
			锑实测浓度 mg/m³	1.14×10 ⁻⁴
			锑折算浓度 mg/m³	1.15×10 ⁻⁴
	(62)	(6)	锑排放速率 kg/h	1.74×10 ⁻⁶
			铜实测浓度 mg/m³	0.00151
			铜折算浓度 mg/m³	0.00153
		0	铜排放速率 kg/h	2.30×10 ⁻⁵
			锰实测浓度 mg/m³	0.00328
			锰折算浓度 mg/m³	0.00331
			锰排放速率 kg/h	5.00×10 ⁻⁵
			锡实测浓度 mg/m³	ND
			锡折算浓度 mg/m³	1 (2)
	(6,2)	6	锡排放速率 kg/h	1 6
	锡、锑、铜、	the a vie	镍实测浓度 mg/m³	4.49×10 ⁻⁴
HFR91607178	汤、	第 2 次 (2025-09-27)	镍折算浓度 mg/m³	4.54×10 ⁻⁴
	抽、垛、 拍	(2025-09-27)	镍排放速率 kg/h	6.84×10 ⁻⁶
		$(c_{i}^{(i)})$	钴实测浓度 mg/m³	1.16×10 ⁻⁴
			钴折算浓度 mg/m³	1.17×10 ⁻⁴
			钴排放速率 kg/h	1.77×10 ⁻⁶
	(FI)	C.	实测浓度(锡、锑、铜、 锰、镍、钴及其化合物) mg/m³	0.00547
			折算浓度(锡、锑、铜、 锰、镍、钴及其化合物) mg/m³	0.00553
		0,	排放速率(锡、锑、铜、 锰、镍、钴及其化合物) kg/h	8.34×10 ⁻⁵
-0-		100		Solin

检测结果

报告编号 A2230677304104C

第 53 页 共 91 页

样品编号		检测项目		结果
			锑实测浓度 mg/m³	1.25×10 ⁻⁴
			锑折算浓度 mg/m³	1.18×10 ⁻⁴
	(67)	(6	锑排放速率 kg/h	1.73×10 ⁻⁶
			铜实测浓度 mg/m³	0.00165
			铜折算浓度 mg/m³	0.00156
		-0	铜排放速率 kg/h	2.29×10 ⁻⁵
			锰实测浓度 mg/m³	0.0125
			锰折算浓度 mg/m³	0.0118
			锰排放速率 kg/h	1.73×10 ⁻⁴
			锡实测浓度 mg/m³	ND
		()	锡折算浓度 mg/m³	1 (2)
	(0,)	(6)	锡排放速率 kg/h	/ / (6)
		第3次	镍实测浓度 mg/m³	5.99×10 ⁻⁴
		(2025-09-27)	镍折算浓度 mg/m³	5.65×10 ⁻⁴
		(2023-09-27)	镍排放速率 kg/h	8.30×10 ⁻⁶
		(67)	钴实测浓度 mg/m³	2.14×10 ⁻⁴
			钴折算浓度 mg/m³	2.02×10 ⁻⁴
HFR91607179	锡、锑、铜、		钴排放速率 kg/h	2.97×10 ⁻⁶
HFK9100/1/9	锰、镍、钴	(d	实测浓度(锡、锑、铜、 锰、镍、钴及其化合物) mg/m³	0.0151
			折算浓度(锡、锑、铜、锰、镍、钴及其化合物) mg/m³	0.0142
		(0,)	排放速率(锡、锑、铜、	(0,2)
			锰、镍、钴及其化合物) kg/h	2.09×10 ⁻⁴
	(ii)	(d	实测浓度(锡、锑、铜、锰、镍、钴及其化合物) mg/m³	0.00999
		平均值	折算浓度(锡、锑、铜、 锰、镍、钴及其化合物) mg/m³	0.00928
		0,	排放速率(锡、锑、铜、 锰、镍、钴及其化合物) kg/h	1.44×10 ⁻⁴

检测结果

报告编号 A2230677304104C

第 54 页 共 91 页

样品编号		检测项目 - - -	 锑实测浓度 mg/m³ 锑折算浓度 mg/m³ 锑排放速率 kg/h 铜实测浓度 mg/m³ 铜折算浓度 mg/m³ 铜排放速率 kg/h 	结果 ND / / 6.15×10 ⁻⁴ 6.41×10 ⁻⁴
			锑折算浓度 mg/m³ 锑排放速率 kg/h 铜实测浓度 mg/m³ 铜折算浓度 mg/m³	/ / 6.15×10 ⁻⁴ 6.41×10 ⁻⁴
		(d)	锑排放速率 kg/h 铜实测浓度 mg/m³ 铜折算浓度 mg/m³	6.41×10 ⁻⁴
			铜实测浓度 mg/m³ 铜折算浓度 mg/m³	6.41×10 ⁻⁴
			铜折算浓度 mg/m³	6.41×10 ⁻⁴
				ARCOCOURS LEGICTS
			铜排放速率 kg/h	1.01×10-5
(41)				1.01×10^{-5}
16.3		1.50 . 0 . 1	锰实测浓度 mg/m³	5.19×10 ⁻⁴
			锰折算浓度 mg/m³	5.41×10 ⁻⁴
			锰排放速率 kg/h	8.49×10 ⁻⁶
			锡实测浓度 mg/m³	ND
10.5		(4	锡折算浓度 mg/m³	1 (2)
3")		(6)	锡排放速率 kg/h	1 6
	锡、锑、铜、	第1次	镍实测浓度 mg/m³	6.66×10 ⁻⁴
HFR91607180	物、	(2025-09-28)	镍折算浓度 mg/m³	6.94×10 ⁻⁴
	血、珠、扣	(2023-09-28)	镍排放速率 kg/h	1.09×10 ⁻⁵
(6,5)		(67)	钴实测浓度 mg/m³	1.87×10 ⁻⁵
			钴折算浓度 mg/m³	1.95×10 ⁻⁵
			钴排放速率 kg/h	3.06×10 ⁻⁷
		Ć	实测浓度(锡、锑、铜、 锰、镍、钴及其化合物) mg/m³	0.00182
			折算浓度(锡、锑、铜、 锰、镍、钴及其化合物) mg/m³	0.00190
			排放速率(锡、锑、铜、 锰、镍、钴及其化合物)	2.98×10 ⁻⁵
			kg/h	

检测结果

报告编号 A2230677304104C

第 55 页 共 91 页

(in)	检测项目	锑实测浓度 mg/m³锑折算浓度 mg/m³锑排放速率 kg/h铜实测浓度 mg/m³	结果 ND / /
(H)	C	锑折算浓度 mg/m³ 锑排放速率 kg/h	1
	E	锑排放速率 kg/h	1
	હ		1
		铜实测浓度 mg/m³	
			3.88×10 ⁻⁴
	1	铜折算浓度 mg/m³	3.50×10 ⁻⁴
	-0-	铜排放速率 kg/h	5.91×10 ⁻⁶
		锰实测浓度 mg/m³	2.42×10 ⁻⁴
		锰折算浓度 mg/m³	2.18×10 ⁻⁴
		锰排放速率 kg/h	3.69×10 ⁻⁶
		锡实测浓度 mg/m³	ND
	(4	锡折算浓度 mg/m³	1
	(6)	锡排放速率 kg/h	1 6
<i>k</i> 目 <i>k</i> á <i>k</i> 目	## 2 Ve	镍实测浓度 mg/m³	7.91×10 ⁻⁴
50.8 (E. 00.8 (C. 0.5)	I CONTROL OF THE STATE OF THE S	镍折算浓度 mg/m³	7.13×10 ⁻⁴
血、床、扣	(2023-09-28)	镍排放速率 kg/h	1.21×10 ⁻⁵
	(3)	钴实测浓度 mg/m³	8.54×10 ⁻⁶
		钴折算浓度 mg/m³	7.69×10 ⁻⁶
		钴排放速率 kg/h	1.30×10 ⁻⁷
	ć	实测浓度(锡、锑、铜、 锰、镍、钴及其化合物) mg/m³	0.00143
		折算浓度(锡、锑、铜、 锰、镍、钴及其化合物) mg/m³	0.00129
		排放速率(锡、锑、铜、锰、镍、钴及其化合物)	2.18×10 ⁻⁵
	锡、锑、铜、锰、镍、钴	10.875 (0.875) (0.875)	 編排放速率 kg/h 陽实测浓度 mg/m³ 陽折算浓度 mg/m³ 陽排放速率 kg/h 镍实测浓度 mg/m³ 镍排放速率 kg/h 镍非预浓度 mg/m³ 镍排放速率 kg/h 钴实测浓度 mg/m³ 钴折算浓度 mg/m³ 钴排放速率 kg/h 实测浓度 (锡、锑、铜、 运、镍、钴及其化合物) mg/m³ 折算浓度 (锡、锑、铜、 猛、镍、钴及其化合物) mg/m³ 排放速率 (锡、锑、铜、 红镍、钴及其化合物) mg/m³ 排放速率 (锡、锑、铜、

检测结果

报告编号 A2230677304104C

第 56页 共 91 页

	147/2012£1		结果
	極侧坝[
-0-			ND
(41)	G.		1
(0,	6		/ / 6
			6.06×10 ⁻⁴
			5.32×10 ⁻⁴
	C°		8.99×10 ⁻⁶
	(c, c)	The second secon	6.11×10 ⁻⁴
		锰折算浓度 mg/m³	5.36×10 ⁻⁴
		锰排放速率 kg/h	9.06×10 ⁻⁶
		锡实测浓度 mg/m³	ND
	0	锡折算浓度 mg/m³	1 (2
(6,)	6	锡排放速率 kg/h	1 6
	the 2 year	镍实测浓度 mg/m³	3.79×10 ⁻⁴
	I TO SEA THE S		3.32×10 ⁻⁴
	(2025-09-28)	镍排放速率 kg/h	5.62×10 ⁻⁶
	$(C_{i,j})$	钴实测浓度 mg/m³	3.86×10 ⁻⁵
		1,007	3.39×10 ⁻⁵
锡、锑、铜、			5.73×10 ⁻⁷
锰、镍、钴			
	0		0.00163
(0,)	6	mg/m³	0.00765
		折算浓度(锡、锑、铜、	
		锰、镍、钴及其化合物)	0.00143
		mg/m³	
	(0,)	排放速率(锡、锑、铜、	(6,1)
		锰、镍、钴及其化合物)	2.42×10 ⁻⁵
		kg/h	
		实测浓度(锡、锑、铜、	705
	(2	锰、镍、钴及其化合物)	0.00163
	0	mg/m³	
		折算浓度(锡、锑、铜、	
	平均值	锰、镍、钴及其化合物)	0.00154
	(6,7)		(6)
		锰、镍、钴及其化合物)	2.53×10 ⁻⁵
	1	THE THE PROPERTY OF THE PARTY O	2.00 10
	000000000000000000000000000000000000000	第 3 次 (2025-09-28) 锡、锑、铜、	切り

检测结果

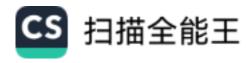
报告编号 A2230677304104C

第 57 页 共 91 页

样品编号		检测项目		结果
77,477,777		MAX 1 No	实测浓度 mg/m³	ND
HFR91607177	(3)	第1次	折算浓度 mg/m³	1 /3
	(62)	(2025-09-27)	排放速率 kg/h	1 6
		tete a via	实测浓度 mg/m³	ND
HFR91607178		第 2 次	折算浓度 mg/m³	/
		(2025-09-27)	排放速率 kg/h	
(25)	1	the a sta	实测浓度 mg/m³	ND
HFR91607179		第 3 次	折算浓度 mg/m³	
	100 T7 +1 11 € A 11/m	(2025-09-27)	排放速率 kg/h	/
	铊及其化合物	Mr. 1 Ma	实测浓度 mg/m³	ND
HFR91607180	(1)	第1次	折算浓度 mg/m³	1
	(0,)	(2025-09-28)	排放速率 kg/h	1
		Mr a Ma	实测浓度 mg/m³	ND
HFR91607181		第2次	折算浓度 mg/m³	1
		(2025-09-28)	排放速率 kg/h	1°21
(6.5)		第 3 次 (2025-09-28)	实测浓度 mg/m³	ND
HFR91607182			折算浓度 mg/m³	1
			排放速率 kg/h	1
-0-	(4)	第 1 次 (2025-09-27)-	实测浓度 mg/m³	0.0060
HFR91607147			折算浓度 mg/m³	0.0052
			排放速率 kg/h	8.98×10 ⁻⁵
		A No.	实测浓度 mg/m³	0.0045
HFR91607148		第 2 次 (2025-09-27)-	折算浓度 mg/m³	0.0045
			排放速率 kg/h	6.86×10 ⁻⁵
(0,)		第3次	实测浓度 mg/m³	0.0042
HFR91607149			折算浓度 mg/m³	0.0040
		(2025-09-27)	排放速率 kg/h	5.82×10 ⁻⁵
· 6	- 汞	Mr. 1 Mr.	实测浓度 mg/m³	0.0059
HFR91607150	(65)	第1次	折算浓度 mg/m³	0.0061
		(2025-09-28)	排放速率 kg/h	9.65×10 ⁻⁵
HFR91607151		Mr a via	实测浓度 mg/m³	0.0031
		第2次	折算浓度 mg/m³	0.0028
		(2025-09-28)	排放速率 kg/h	4.72×10 ⁻⁵
(6)	1	tels a vis	实测浓度 mg/m³	ND
HFR91607152		第 3 次	折算浓度 mg/m³	/
		(2025-09-28)	排放速率 kg/h	/

检测结果

报告编号 A2230677304104C


第 58 页 共 91 页

样品编号		检测项目		结果
		第1次	实测浓度 mg/m³	0.00405
HFR91607177			折算浓度 mg/m³	0.00349
	(6,2)	(2025-09-27)	排放速率 kg/h	6.06×10 ⁻⁵
		MA 2 VI	实测浓度 mg/m³	0.00254
HFR91607178		第2次 (2025-09-27)	折算浓度 mg/m³	0.00257
		(2025-09-27)	排放速率 kg/h	3.87×10 ⁻⁵
(25)		MA 2 VI	实测浓度 mg/m³	0.00660
HFR91607179		第 3 次 (2025-09-27)	折算浓度 mg/m³	0.00623
	铬及其化合物	(2025-09-27)	排放速率 kg/h	9.15×10 ⁻⁵
	(以Cr计)	MAS 1 VA	实测浓度 mg/m³	ND
HFR91607180		第1次	折算浓度 mg/m³	1 (A
	(6,5)	(2025-09-28)	排放速率 kg/h	1 6
		Action 2 Mer	实测浓度 mg/m³	5.49×10 ⁻⁴
HFR91607181		第2次 (2025-09-28)	折算浓度 mg/m³	4.95×10 ⁻⁴
		(2025-09-28)	排放速率 kg/h	8.37×10 ⁻⁶
HFR91607182		第 3 次 (2025-09-28)	实测浓度 mg/m³	ND
			折算浓度 mg/m³	1
			排放速率 kg/h	1
0	-0-	第1次 (2025-09-27)-	实测浓度 mg/m³	3.04×10 ⁻⁴
HFR91607177			折算浓度 mg/m³	2.62×10 ⁻⁴
			排放速率 kg/h	4.55×10 ⁻⁶
		MA 2 VIII	实测浓度 mg/m³	ND
HFR91607178		第 2 次 (2025-09-27)	折算浓度 mg/m³	/
			排放速率 kg/h	
(0,)		第3次	实测浓度 mg/m³	2.80×10 ⁻⁴
HFR91607179		(2025-09-27)	折算浓度 mg/m³	2.64×10 ⁻⁴
	砷及其化合物	(2023-09-27)	排放速率 kg/h	3.88×10 ⁻⁶
6.	(以As计)	第1次	实测浓度 mg/m³	ND
HFR91607180	(6,5)	(2025-09-28)	折算浓度 mg/m³	1 (6)
		(2023-09-28)	排放速率 kg/h	1
HFR91607181		MA 2 VIC	实测浓度 mg/m³	ND
		第2次 (2025-09-28)	折算浓度 mg/m³	-0-1
		(2023-09-28)	排放速率 kg/h	(31)
		第3次	实测浓度 mg/m³	ND
HFR91607182		第3次 (2025-09-28)	折算浓度 mg/m³	1
		(2025-09-28)	排放速率 kg/h	/

检测结果

报告编号 A2230677304104C

样品编号		检测项目		结果
		MA 1 No	实测浓度 mg/m³	3.7
HFR91607141		第1次 (2025-09-27)	折算浓度 mg/m³	3.6
(N)		(2025-09-27)	排放速率 kg/h	0.0473
		tele a via	实测浓度 mg/m³	1.5
HFR91607142		第2次	折算浓度 mg/m³	1.4
-0-		(2025-09-27)	排放速率 kg/h	0.0219
		Mr. a. Mr.	实测浓度 mg/m³	2.9
HFR91607143		第 3 次	折算浓度 mg/m³	2.5
1. SEPECIAL COMPANION CONTRACTOR AND AND SEPECIAL TO 1	颗粒物(低浓	(2025-09-27)	排放速率 kg/h	0.0448
	度)	folio I	实测浓度 mg/m³	2.8
HFR91607144		第1次	折算浓度 mg/m³	2.7
5)		(2025-09-28)	排放速率 kg/h	0.0420
HFR91607145		tota - vi	实测浓度 mg/m³	2.6
		第2次(2025-09-28)	折算浓度 mg/m³	2.5
			排放速率 kg/h	0.0386
(62)		第 3 次 (2025-09-28)	实测浓度 mg/m³	2.2
HFR91607146			折算浓度 mg/m³	2.1
			排放速率 kg/h	0.0317
	-05		实测浓度 mg/m³	ND
HFR91607153		第1次	折算浓度 mg/m³	1 (3
5		(2025-09-27)	排放速率 kg/h	1
			实测浓度 mg/m³	ND
HFR91607154		第2次	折算浓度 mg/m³	/
		(2025-09-27)	排放速率 kg/h	
(67)		() () () () ()	实测浓度 mg/m³	ND
HFR91607155	二氧化硫	第3次	折算浓度 mg/m³	1
		(2025-09-27)	排放速率 kg/h	1
07			实测浓度 mg/m³	ND
HFR91607156		第4次	折算浓度 mg/m³	1
		(2025-09-27)	排放速率 kg/h	1
			实测浓度 mg/m³	ND
HFR91607153/154		平均值	折算浓度 mg/m³	/
/155/156		(2025-09-27)	排放速率 kg/h	

检测结果

报告编号 A2230677304104C

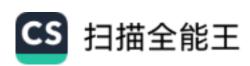
第 60 页 共 91 页

样品编号		检测项目		结果
	heles I		实测浓度 mg/m³	ND
HFR91607157		第5次	折算浓度 mg/m³	1 /3
(3)		(2025-09-27)	排放速率 kg/h	1 6
		tele code	实测浓度 mg/m³	ND
HFR91607158		第6次	折算浓度 mg/m³	/
-0		(2025-09-27)	排放速率 kg/h	
(2/2)		tels = vL	实测浓度 mg/m³	ND
HFR91607159		第7次	折算浓度 mg/m³	
		(2025-09-27)	排放速率 kg/h	/
		the o vie	实测浓度 mg/m³	ND
HFR91607160		第8次	折算浓度 mg/m³	1
(°)		(2025-09-27)	排放速率 kg/h	1 6
***************************************		平均值 (2025-09-27) -	实测浓度 mg/m³	ND
HFR91607157/158			折算浓度 mg/m³	1
/159/160	一与 /lurts		排放速率 kg/h	/°2/
(67)	二氧化硫	第 9 次 (2025-09-27)	实测浓度 mg/m³	ND
HFR91607161			折算浓度 mg/m³	1
			排放速率 kg/h	/
· · ·		第 10 次 (2025-09-27)	实测浓度 mg/m³	ND
HFR91607162			折算浓度 mg/m³	1
		(2023-09-27)	排放速率 kg/h	1
		第 11 次	实测浓度 mg/m³	ND
HFR91607163		(2025-09-27)	折算浓度 mg/m³	/
		(2023-09-27)	排放速率 kg/h	
HFR91607164		第 12 次	实测浓度 mg/m³	ND
		(2025-09-27)	折算浓度 mg/m³	/
		(2023-09-27)	排放速率 kg/h	1
HED01607161/162		平均值	实测浓度 mg/m³	ND
HFR91607161/162 /163/164			折算浓度 mg/m³	1 (6)
/103/104		(2025-09-27)	排放速率 kg/h	/

检测结果

报告编号 A2230677304104C

样品编号		检测项目		结果
	heles		实测浓度 mg/m³	ND
HFR91607165		第1次	折算浓度 mg/m³	1 (3
(3)		(2025-09-28)	排放速率 kg/h	/ (6)
		Mr. a. vl.	实测浓度 mg/m³	ND
HFR91607166		第2次 (2025-09-28)	折算浓度 mg/m³	/
(*)		(2025-09-28)	排放速率 kg/h	J. 0.7
(25)		MA 2 Mr	实测浓度 mg/m³	ND
HFR91607167		第 3 次 (2025-09-28)	折算浓度 mg/m³	
		(2025-09-28)	排放速率 kg/h	/
		MA NA	实测浓度 mg/m³	ND
HFR91607168		第4次	折算浓度 mg/m³	1 (2)
		(2025-09-28)	排放速率 kg/h	1 6
HED01007107/100		平均值 - (2025-09-28) -	实测浓度 mg/m³	ND
HFR91607165/166			折算浓度 mg/m³	/
/167/168	一年几次	(2025-09-28)	排放速率 kg/h	C31
(67)	二氧化硫	第 5 次 (2025-09-28)	实测浓度 mg/m³	ND
HFR91607169			折算浓度 mg/m³	1
			排放速率 kg/h	/
		第 6 次 (2025-09-28)-	实测浓度 mg/m³	ND
HFR91607170			折算浓度 mg/m³	1 (4)
			排放速率 kg/h	1
		第7次	实测浓度 mg/m³	ND
HFR91607171		(2025-09-28)	折算浓度 mg/m³	/
		(2023-09-28)	排放速率 kg/h	
(0,)		MAS O NA	实测浓度 mg/m³	ND
HFR91607172		第8次 (2025-09-28)	折算浓度 mg/m³	/
		(2023-09-28)	排放速率 kg/h	/
HED01607160/170		平均值	实测浓度 mg/m³	ND
HFR91607169/170 /171/172		(2025-09-28)	折算浓度 mg/m³	1
/1/1/1/2		(2023-09-28)	排放速率 kg/h	/



检测结果

报告编号 A2230677304104C

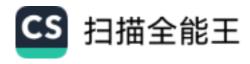
第 62 页 共 91 页

样品编号		检测项目		结果
		第9次	实测浓度 mg/m³	ND
HFR91607173		(2025-09-28)	折算浓度 mg/m³	1 (3
(3)		(2023-09-28)	排放速率 kg/h	1 6
		第 10 次	实测浓度 mg/m³	ND
HFR91607174		(2025-09-28)	折算浓度 mg/m³	/
- 0		(2023-09-28)	排放速率 kg/h	J. 0.7
(272)		第 11 次	实测浓度 mg/m³	ND
HFR91607175	二氧化硫	(2025-09-28)	折算浓度 mg/m³	
		(2023-09-28)	排放速率 kg/h	/
		MS 12 V/m	实测浓度 mg/m³	ND
HFR91607176		第 12 次 (2025-09-28)-	折算浓度 mg/m³	1 (2)
5.			排放速率 kg/h	1
***************************************		平均值 (2025-09-28)	实测浓度 mg/m³	ND
HFR91607173/174			折算浓度 mg/m³	/
/175/176			排放速率 kg/h	(°Z)
(67)		第 1 次 (2025-09-27)	实测浓度 mg/m³	64
HFR91607111			折算浓度 mg/m³	70
			排放速率 kg/h	0.818
-0-		第 2 次 (2025-09-27)	实测浓度 mg/m³	74
HFR91607112			折算浓度 mg/m³	69
		(2023-09-27)	排放速率 kg/h	0.946
		第3次	实测浓度 mg/m³	78
HFR91607113	氮氧化物	(2025-09-27)	折算浓度 mg/m³	69
		(2023-09-27)	排放速率 kg/h	0.997
HFR91607114		第4次	实测浓度 mg/m³	42
		(2025-09-27)	折算浓度 mg/m³	44
		(2025-09-27)	排放速率 kg/h	0.537
HED01/07111/110		平均值	实测浓度 mg/m³	64
HFR91607111/112		平均但 (2025-09-27)	折算浓度 mg/m³	63
/113/114		(2023-09-27)	排放速率 kg/h	0.824

检测结果

报告编号 A2230677304104C

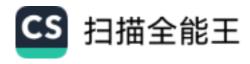
样品编号		检测项目		结果
		tele = M	实测浓度 mg/m³	76
HFR91607115		第5次	折算浓度 mg/m³	69
(5)		(2025-09-27)	排放速率 kg/h	1.11
		tele e M.	实测浓度 mg/m³	74
HFR91607116		第6次	折算浓度 mg/m³	69
-0-		(2025-09-27)	排放速率 kg/h	1.08
		tete = M.	实测浓度 mg/m³	108
HFR91607117		第7次	折算浓度 mg/m³	94
1 33 4 5 10 A 4 3 4 7 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5		(2025-09-27)	排放速率 kg/h	1.58
		Mr. o. Mr.	实测浓度 mg/m³	106
HFR91607118		第8次	折算浓度 mg/m³	107
33)		(2025-09-27)	排放速率 kg/h	1.55
70		平均值	实测浓度 mg/m³	91
HFR91607115/116			折算浓度 mg/m³	85
/117/118	5 5 A. H.	(2025-09-27)	排放速率 kg/h	1.33
(6,5)	氮氧化物	第9次	实测浓度 mg/m³	119
HFR91607119			折算浓度 mg/m³	113
		(2025-09-27)	排放速率 kg/h	1.84
-0-		第 10 次	实测浓度 mg/m³	107
HFR91607120			折算浓度 mg/m³	95
9		(2025-09-27)	排放速率 kg/h	1.65
		Mr. 4.4 Mr.	实测浓度 mg/m³	107
HFR91607121		第11次	折算浓度 mg/m³	91
		(2025-09-27)	排放速率 kg/h	1.65
HFR91607122		G my st	实测浓度 mg/m³	105
		第12次	折算浓度 mg/m³	85
		(2025-09-27)	排放速率 kg/h	1.62
***************************************		77 ld /dz	实测浓度 mg/m³	110
HFR91607119/120		平均值	折算浓度 mg/m³	96
/121/122		(2025-09-27)	排放速率 kg/h	1.69

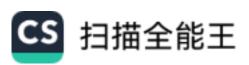


检测结果

报告编号 A2230677304104C

样品编号		检测项目		结果
	MAS 1 No		实测浓度 mg/m³	64
HFR91607123		第1次	折算浓度 mg/m³	61
(1)		(2025-09-28)	排放速率 kg/h	0.960
		Mr. a. Vla	实测浓度 mg/m³	66
HFR91607124		第2次	折算浓度 mg/m³	62
		(2025-09-28)	排放速率 kg/h	0.990
(20)		Mr a No	实测浓度 mg/m³	66
HFR91607125		第 3 次	折算浓度 mg/m³	62
		(2025-09-28)	排放速率 kg/h	0.990
		Mr. 4 VI	实测浓度 mg/m³	66
HFR91607126		第4次	折算浓度 mg/m³	64
3")		(2025-09-28)	排放速率 kg/h	0.990
		平均值 -	实测浓度 mg/m³	66
HFR91607123/124			折算浓度 mg/m³	62
/125/126	== /lethn	(2025-09-28)	排放速率 kg/h	0.982
(6,5)	氮氧化物	MAS = No	实测浓度 mg/m³	66
HFR91607127		第 5 次 (2025-09-28)	折算浓度 mg/m³	65
			排放速率 kg/h	0.980
-0-		第6次	实测浓度 mg/m³	65
HFR91607128			折算浓度 mg/m³	67
		(2025-09-28)	排放速率 kg/h	0.965
		Ms = No	实测浓度 mg/m³	66
HFR91607129		第7次	折算浓度 mg/m³	67
		(2025-09-28)	排放速率 kg/h	0.980
HFR91607130		Mr. o. vla	实测浓度 mg/m³	71
		第8次	折算浓度 mg/m³	66
		(2025-09-28)	排放速率 kg/h	1.05
HFR91607127/128		亚州东	实测浓度 mg/m³	67
		平均值	折算浓度 mg/m³	66
/129/130		(2025-09-28)	排放速率 kg/h	0.994

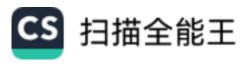



检测结果

报告编号 A2230677304104C

第 65 页 共 91 页

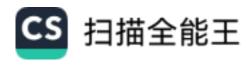
样品编号		检测项目		结果
			实测浓度 mg/m³	71
HFR91607131		第9次	折算浓度 mg/m³	66
		(2025-09-28)	排放速率 kg/h	1.02
		Mr. 40 M	实测浓度 mg/m³	71
HFR91607132		第10次	折算浓度 mg/m³	67
-0-		(2025-09-28)	排放速率 kg/h	1.02
(20)		hh 11 VI	实测浓度 mg/m³	70
HFR91607133	氮氧化物	第11次	折算浓度 mg/m³	67
1 State and Assessment Control and the Argument Control		(2025-09-28)	排放速率 kg/h	1.01
		M5 10 V/4	实测浓度 mg/m³	70
HFR91607134		第12次	折算浓度 mg/m³	67
33)		(2025-09-28)	排放速率 kg/h	1.01
		平均值	实测浓度 mg/m³	70
HFR91607131/132			折算浓度 mg/m³	67
/133/134		(2025-09-28)	排放速率 kg/h	1.02
(62)		第 1 次 (2025-09-27)	实测浓度 mg/m³	ND
HFR91607081			折算浓度 mg/m³	7
			排放速率 kg/h	/
-0-		第2次	实测浓度 mg/m³	ND
HFR91607082			折算浓度 mg/m³	1 (4
3		(2025-09-27)	排放速率 kg/h	/ (
		the a sta	实测浓度 mg/m³	ND
HFR91607083	一氧化碳	第 3 次 (2025-09-27)	折算浓度 mg/m³	1
		(2025-09-27)	排放速率 kg/h	
HFR91607084		the sales	实测浓度 mg/m³	10
		第 4 次	折算浓度 mg/m³	10
		(2025-09-27)	排放速率 kg/h	0.128
HED01 (07001 (002		亚拉法	实测浓度 mg/m³	ND
HFR91607081/082		平均值 (2025-09-27)	折算浓度 mg/m³) / (6)
/083/084		(2025-09-27)	排放速率 kg/h	1


检测结果

报告编号 A2230677304104C

第 66 页 共 91 页

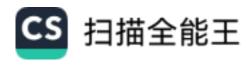
样品编号		检测项目		结果
		第5次	实测浓度 mg/m³	4
HFR91607085		(2025-09-27)	折算浓度 mg/m³	4
(3)		(2023-09-27)	排放速率 kg/h	0.0585
		MAS C NA	实测浓度 mg/m³	ND
HFR91607086		第6次 (2025-09-27)	折算浓度 mg/m³	/
(*)		(2023-09-27)	排放速率 kg/h	
(25)		第7次	实测浓度 mg/m³	11)
HFR91607087		(2025-09-27)	折算浓度 mg/m³	10
		(2025-09-27)	排放速率 kg/h	0.161
		第8次	实测浓度 mg/m³	10
HFR91607088		(2025-09-27)	折算浓度 mg/m³	10
(3°)		(2023-09-21)	排放速率 kg/h	0.146
HED01/07005/00/	一氧化碳	平均值 (2025-09-27)-	实测浓度 mg/m³	6
HFR91607085/086			折算浓度 mg/m³	6
/087/088			排放速率 kg/h	0.0914
(6,7)		第 9 次 (2025-09-27)	实测浓度 mg/m³	12
HFR91607089			折算浓度 mg/m³	11
			排放速率 kg/h	0.185
· ·		第 10 次 (2025-09-27)	实测浓度 mg/m³	9
HFR91607090			折算浓度 mg/m³	8
		(2023-09-27)	排放速率 kg/h	0.139
		第11次	实测浓度 mg/m³	6
HFR91607091		(2025-09-27)	折算浓度 mg/m³	5
		(2023-09-27)	排放速率 kg/h	0.0927
HFR91607092		第 12 次	实测浓度 mg/m³	10
		(2025-09-27)	折算浓度 mg/m³	8
		(2023-09-27)	排放速率 kg/h	0.154
HED01/07090/000		平均值	实测浓度 mg/m³	9
HFR91607089/090 /091/092		(2025-09-27)	折算浓度 mg/m³	8
/091/092		(2023-09-27)	排放速率 kg/h	0.143



检测结果

报告编号 A2230677304104C

第 67 页 共 91 页


样品编号		检测项目		结果
	Mr. + No.		实测浓度 mg/m³	ND
HFR91607093		第1次 (2025-09-28)	折算浓度 mg/m³	1 /3
		(2025-09-28)	排放速率 kg/h	1 (6)
		the and	实测浓度 mg/m³	ND
HFR91607094		第2次	折算浓度 mg/m³	/
-05		(2025-09-28)	排放速率 kg/h	J. 0-1
(25)		tota a No	实测浓度 mg/m³	ND
HFR91607095		第 3 次	折算浓度 mg/m³	
		(2025-09-28)	排放速率 kg/h	/
		tota a vita	实测浓度 mg/m³	ND
HFR91607096		第4次	折算浓度 mg/m³	1 (4
3")		(2025-09-28)	排放速率 kg/h	1 6
***************************************		平均值 (2025-09-28)	实测浓度 mg/m³	ND
HFR91607093/094			折算浓度 mg/m³	/
/095/096	Er Π.τΨ		排放速率 kg/h	1°21
(6,7)	一氧化碳	第5次	实测浓度 mg/m³	ND
HFR91607097			折算浓度 mg/m³	1
		(2025-09-28)	排放速率 kg/h	/
-0-		第6次	实测浓度 mg/m³	3
HFR91607098			折算浓度 mg/m³	3
3		(2025-09-28)	排放速率 kg/h	0.0445
		Ms a No	实测浓度 mg/m³	3
HFR91607099		第7次 (2025-09-28)	折算浓度 mg/m³	3
		(2023-09-28)	排放速率 kg/h	0.0445
(6.)		MA O VIC	实测浓度 mg/m³	3
HFR91607100		第 8 次 (2025-09-28)	折算浓度 mg/m³	3
		(2023-09-28)	排放速率 kg/h	0.0445
HED01/07007/000		亚拉佐	实测浓度 mg/m³	ND
HFR91607097/098		平均值 (2025-09-28)	折算浓度 mg/m³	1 (6)
/099/100		(2023-09-28)	排放速率 kg/h	/

检测结果

报告编号 A2230677304104C

样品编号		检测项目		结果
	第9次		实测浓度 mg/m³	ND
HFR91607101			折算浓度 mg/m³	1 /3
(1)		(2025-09-28)	排放速率 kg/h	1 (6)
		Mr. 10 Mr	实测浓度 mg/m³	3
HFR91607102		第10次 (2025-09-28)	折算浓度 mg/m³	3
-07		(2025-09-28)	排放速率 kg/h	0.0433
(25)		kk 11 vla	实测浓度 mg/m³	3
HFR91607103	一氧化碳	第11次	折算浓度 mg/m³	3
		(2025-09-28)	排放速率 kg/h	0.0433
		Mr. 10 Mr.	实测浓度 mg/m³	3
HFR91607104		第12次	折算浓度 mg/m³	3
3")		(2025-09-28)	排放速率 kg/h	0.0433
		平均值 (2025-09-28)	实测浓度 mg/m³	ND
HFR91607101/102			折算浓度 mg/m³	1
/103/104			排放速率 kg/h	1:31
(6,5)		第 1 次 (2025-09-27)	实测浓度 mg/m³	0.57
HFR91607183			折算浓度 mg/m³	0.56
			排放速率 kg/h	7.28×10 ⁻³
.0-		第 2 次 (2025-09-27)	实测浓度 mg/m³	0.24
HFR91607184			折算浓度 mg/m³	0.22
3			排放速率 kg/h	3.51×10 ⁻³
		Mr a Mr	实测浓度 mg/m³	ND
HFR91607185		第 3 次	折算浓度 mg/m³	/
	E 11. E	(2025-09-27)	排放速率 kg/h	
(6,)	氟化氢	Mr. a Mr.	实测浓度 mg/m³	ND
HFR91607186		第1次	折算浓度 mg/m³	/
		(2025-09-28)	排放速率 kg/h	1
2		Mr - M	实测浓度 mg/m³	ND
HFR91607187		第2次	折算浓度 mg/m³	1 (6)
		(2025-09-28)	排放速率 kg/h	1
		tele - al	实测浓度 mg/m³	ND
HFR91607188		第3次	折算浓度 mg/m³	40-1
		(2025-09-28)	排放速率 kg/h	

检测结果

报告编号 A2230677304104C

第 69 页 共 91 页

样品编号	检测项目			结果
	the sale		实测浓度 mg/m³	0.22
HFR91607135		第1次 - (2025-09-27) -	折算浓度 mg/m³	0.22
(N)		(2023-09-27)	排放速率 kg/h	2.81×10 ⁻³
		MA 2 VA	实测浓度 mg/m³	6.35
HFR91607136		第2次 (2025-09-27)	折算浓度 mg/m³	5.88
		(2025-09-27)	排放速率 kg/h	0.0928
(25)	第 3 次 (2025-09-2 氯化氢	MASS 2 Notes	实测浓度 mg/m³	1.42
HFR91607137			折算浓度 mg/m³	1.25
		(2025-09-27)	排放速率 kg/h	0.0219
		第 1 次 (2025-09-28)-	实测浓度 mg/m³	0.42
HFR91607138			折算浓度 mg/m³	0.40
3")			排放速率 kg/h	6.30×10 ⁻³
		tets a vie	实测浓度 mg/m³	0.37
HFR91607139		第2次	折算浓度 mg/m³	0.36
(3)		(2025-09-28)	排放速率 kg/h	5.49×10 ⁻³
(6.5)		the a view	实测浓度 mg/m³	ND
HFR91607140		第 3 次	折算浓度 mg/m³	1
		(2025-09-28)	排放速率 kg/h	1

备注:

- 1.一氧化碳、二氧化硫、氮氧化物为现场检测。
- 2."ND"表示未检出。
- 2.基准含氧量 11%, 此信息由受检单位提供。
- 3."/"表示检测项目的实测浓度小于检出限,故折算浓度、排放速率无需计算。

检测结果

报告编号 A2230677304104C

第 70 页 共 91 页

表 13:

样品信息:				
样品类型	焚烧炉废气	(67)	(67)	(6)
采样点位名称	危废焚烧炉尾气排放口 D	A002		
采样日期	2025-09-27 2025-09-28	检测日期	2025-09-27	2025-09-28
排气筒高度/m	35	样品状态	完好	
检测结果:		(4)		(1)
样品编号		检测项目		结果
HFR91607907		第1次(2025-09-27)		< 1
HFR91607908		第2次(2	第 2 次 (2025-09-27)	
HFR91607909	加层图应	第 3 次 (2	第 3 次 (2025-09-27)	
HFR91607910	烟气黑度	第1次(2	025-09-28)	<1
HFR91607911		第2次(2	025-09-28)	< 1
HFR91607912		第 3 次 (2025-09-28)		< 1
备注: 1.烟气黑度为现场	· 检测。	(di		(1)

CS 扫描全能王

检测结果

报告编号 A2230677304104C

第 71 页 共 91 页


表 14:

样品值	信息:		(3)		in a				1
样品	类型	厂界	製声 ()	(6		(4	(T)		(6)
检测	日期	2025- 2025- 2025-	09-27	气象条件	昼间:阴天, 夜间:多云, 昼间:多云,	风速:1.3m/	s;	天, 风速:1	.5m/s;
检测统	结果:	(1)	(2	(11)	(4			(41)	
序	检测	上台	0	主要	声源	/	结果(dB(A))	
号	極侧置		检测时段	昼间	夜间	昼间 Leq	夜间 Leq	夜间 Lmax	夜间噪 声类型
ı	东厂引 米处	ASSOCIATION OF	昼间: 2025-09-26	生产噪声	生产噪声	49.2	48.2	54.1	偶发
2	北厂星	200	16:10~2025-09-26 16:32	生产噪声	生产噪声	52.6	52.3	58.9	偶发
3	南厂星	100	夜间: 2025-09-26 22:00~2025-09-26	生产噪声	生产噪声	53.9	48.6	57.3	偶发
4	西厂 非处		22:18	生产噪声	生产噪声	59.3	52.3	57.0	偶发
5	东厂 界 米 处	0.0000000000000000000000000000000000000	昼间: 2025-09-28	生产噪声	生产噪声	48.3	46.5	53.9	频发
6	北厂界		15:35~2025-09-28 15:53	生产噪声	生产噪声	56.2	51.4	53.3	频发
7	南厂界	界外 1 ₺ 2#	夜间: 2025-09-27 22:08~2025-09-27	生产噪声	生产噪声	53.6	50.8	55.7	频发
8		界外 1 ₺ 3#	22:26	生产噪声	生产噪声	55.5	50.9	56.5	频发

检测结果

报告编号 A2230677304104C

第 72 页 共 91 页

序号	检测点位	检测时段		样品编号	
力亏	置	位例时段	昼间 Leq	夜间 Leq	夜间 Lmax
1	东厂界外 1 米处 1#	昼间: 2025-09-26	HFR91607891	HFR91607893	HFR91607893
2	北厂界外 1 米处 4#	16:10~2025-09-26 16:32	HFR91607903	HFR91607905	HFR91607905
3	南厂界外 1 米处 2#	夜间: 2025-09-26 22:00~2025-09-26 22:18	HFR91607895	HFR91607897	HFR91607897
4	西厂界外 1 米处 3#		HFR91607899	HFR91607901	HFR91607901
5	东厂界外 1 米处 1#	昼间: 2025-09-28	HFR91607892	HFR91607894	HFR91607894
6	北厂界外 1 米处 4#	15:35~2025-09-28 15:53	HFR91607904	HFR91607906	HFR91607906
7	南厂界外 1 米处 2#	夜间: 2025-09-27 22:08~2025-09-27 22:26	HFR91607896	HFR91607898	HFR91607898
8	西厂界外 1 米处 3#		HFR91607900	HFR91607902	HFR91607902

检测结果

报告编号 A2230677304104C

第 73 页 共 91 页

表 15:

检测方法及检	出限、仪器设备:		/3	
样品类型	检测项目	检测标准(方法)名称 及编号(含年号)	方法 检出限	仪器设备 名称及型号
(氨氮	水质 氨氮的测定 纳氏试剂 分光光度法 HJ 535-2009	0.025mg/L	紫外可见分光光度计(UV) UV-1800PC
	化学需氧量	水质 化学需氧量的测定 重 铬酸盐法 HJ 828-2017	4mg/L	连续数字滴定仪 Titrette 50ml
	五日生化需氧量	水质 五日生化需氧量 (BODs)的测定 稀释与接种 法 HJ 505-2009	0.5mg/L	生化培养箱 LRH-150
	pH值	水质 pH 值的测定 电极法 HJ 1147-2020		便携式 pH/ORP/电导率/溶解 氧仪 SX751
	铅	水质 32 种元素的测定 电感	0.1mg/L	电感耦合等离子体光谱仪
废水	镉	耦合等离子体发射光谱法 HJ 776-2015	0.05mg/L	(ICP) 8300DV
	甲醇	水质 甲醇和丙酮的测定 顶空/气相色谱法 HJ 895-2017	0.2mg/L	气相色谱仪(GC) 7890B
	悬浮物	水质 悬浮物的测定 重量法 GB/T 11901-1989		分析天平 ME204
	甲苯		0.0003mg/L	
		水质 挥发性有机物的测定	对/间二甲苯: 0.0005mg/L	气相色谱质谱联用仪
	二甲苯	吹扫捕集/气相色谱-质谱法 HJ 639-2012	二甲苯(总量): 0.0005mg/L	(GCMS) QP-2010Ultra
			邻二甲苯: 0.0002mg/L	
	汞	水质 汞、砷、硒、铋和锑的 测定 原子荧光法 HJ 694-2014	0.00004mg/L	双通道原子荧光光谱仪 BAF-2000

检测结果

报告编号 A2230677304104C

第 74页 共 91 页

样品类型	检测项目	检测标准(方法)名称 及编号(含年号)	方法 检出限	仪器设备 名称及型号
	六价铬	水质 六价铬的测定 二苯碳 酰二肼分光光度法 GB/T 7467-1987	0.004mg/L	紫外可见分光光度计(UV) UV-1800PC
废水	铬	水质 32 种元素的测定 电感 耦合等离子体发射光谱法 HJ 776-2015	0.03mg/L	电感耦合等离子体光谱仪 (ICP) 8300DV
	砷	水质 汞、砷、硒、铋和锑的 测定 原子荧光法 HJ 694-2014	0.0003mg/L	双通道原子荧光光谱仪 BAF-2000
	总悬浮颗粒物	环境空气 总悬浮颗粒物的测 定 重量法 HJ 1263-2022	0.168mg/m ³	电子天平 SECURA225D-1CN
	硫化氢	空气质量 硫化氢、甲硫醇、 甲硫醚和二甲二硫的测定 气 相色谱法 GB/T 14678-1993	0.0003mg/m³	气相色谱仪(GC) 7890B
	甲苯	环境空气 苯系物的测定 活	甲苯: 0.0015mg/m³	
	二甲苯	性炭吸附/二硫化碳解吸-气相 色谱法 HJ 584-2010	二甲苯: 0.0015mg/m³	气相色譜仪(GC) GC-2010Plus
工业废气(无	甲醇	固定污染源排气中甲醇的测定气相色谱法 HJ/T 33-1999	2mg/m³	气相色谱仪(GC)
组织)	非甲烷总烃	环境空气 总烃、甲烷和非甲烷总烃的测定 直接进样-气相色谱法 HJ 604-2017	0.07mg/m ³	GC-2014
	臭气浓度	环境空气和废气 臭气的测定 三点比较式臭袋法 HJ 1262-2022	, 6) , (5
	氨	环境空气 氨的测定 次氯酸钠-水杨酸分光光度法 HJ 534-2009	0.004mg/m ³	紫外可见分光光度计(UV) UV-7504
(氯化氢	环境空气和废气 氯化氢的测定 离子色谱法 HJ 549-2016	0.02mg/m³	离子色谱仪(IC) ICS-1100

检测结果

报告编号 A2230677304104C

第 75 页 共 91 页

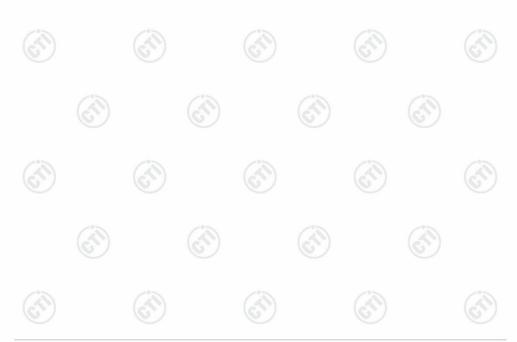
样品类型	检测项目	检测标准(方法)名称 及编号(含年号)	方法 检出限	仪器设备 名称及型号
	颗粒物(低浓度)	固定污染源废气 低浓度颗粒 物的测定 重量法 HJ 836-2017	1.0mg/m³	电子天平 SECURA225D-1CN
(二氧化硫	《空气和废气监测分析方法》 (国家环保总局 2003 年 第四版)(第五篇 第四章 — (五) 甲醛缓冲溶液吸收-副玫瑰苯 胺分光光度法)	2.5mg/m³	紫外可见分光光度计 T6 新世纪
	氮氧化物	固定污染源排气中氮氧化物 的测定 盐酸萘乙二胺分光光 度法 HJ/T 43-1999	0.7mg/m³	紫外可见分光光度计(UV) UV-7504
工业废气(有组织)	氯化氢	环境空气和废气 氯化氢的测定 离子色谱法 HJ 549-2016	0.2mg/m³	离子色谱仪 CIC-D120
O.	非甲烷总烃	固定污染源废气 总烃、甲烷 和非甲烷总烃的测定 气相色 谱法 HJ 38-2017	0.07mg/m ³	气相色谱仪(GC)
37)	甲醇	固定污染源排气中甲醇的测定气相色谱法 HJ/T 33-1999	2mg/m³	GC-2014
9	甲苯	四分公孙城市台 超级原子的	0.004mg/m ³	/°>
(固定污染源废气 挥发性有机 物的测定 固相吸附-热脱附/	对、间二甲苯的 0.009mg/m³	气相色谱质谱联用仪 (GCMS)
	二甲苯	气相色谱-质谱法 HJ 734-2014	邻二甲苯的 0.004mg/m³	QP2020 NX

检测结果

报告编号 A2230677304104C

第 76页 共 91 页

		检测标准(方法)名称	方法	仪器设备	
样品类型	检测项目		V200-N-0000000		
-0.75	to state a Advantage	及编号(含年号)	检出限	名称及型号	
	铅及其化合物(以 Pb 计)		0.0002mg/m ³		
	镉及其化合物(以Cd 计)	空气和废气 颗粒物中铅等金	0.000008mg/m ³		
	-0-	属元素的测定 电感耦合等离	锑 0.00002mg/m³	电感耦合等离子体质谱仪	
		子体质谱法	铜 0.0002mg/m³	(ICP-MS)	
	锡、锑、铜、锰、镍、	HJ 657-2013 及修改单	锰 0.00007mg/m³	NexION 1000	
	钴		锡 0.0003mg/m³		
			镍 0.0001mg/m³		
			钴 0.000008mg/m³		
	颗粒物(低浓度)	固定污染源废气 低浓度颗粒 物的测定 重量法 HJ 836-2017	1.0mg/m³	电子天平 SECURA225D-1CN	
焚烧炉废气	二氧化硫	固定污染源废气 二氧化硫的 测定 定电位电解法 HJ 57-2017	3mg/m³	(city)	
	氮氧化物	固定污染源废气 氮氧化物的 测定 定电位电解法 HJ 693-2014	3mg/m³	自动烟尘烟气综合测试仪 ZR-3260	
	一氧化碳	固定污染源废气 一氧化碳的 测定 定电位电解法 HJ 973-2018	3mg/m³		
	氟化氢	固定污染源废气 氟化氢的 测定 离子色谱法 HJ 688-2019	0.08mg/m ³	离子色谱仪(IC) ICS-1100	
	氯化氢	环境空气和废气 氯化氢的测定 离子色谱法 HJ 549-2016	0.2mg/m³	离子色谱仪 CIC-D120	
	烟气黑度	固定污染源废气 烟气黑度的 测定 林格曼望远镜法 HJ 1287-2023	1	测烟望远镜 DL-LGM612	
	705		_0	-0-	


检测结果

报告编号 A2230677304104C

第 77 页 共 91 页

样品类型	检测项目	检测标准(方法)名称	方法	仪器设备
		及编号(含年号)	检出限	名称及型号
	铊及其化合物	空气和废气 颗粒物中铅等金 属元素的测定 电感耦合等离 子体质谱法 HJ 657-2013 及修改单	0.000008mg/m ³	电感耦合等离子体质谱仪 (ICP-MS) NexION 1000
焚烧炉废气	汞	固定污染源废气 汞的测定 冷原子吸收分光光度法(暂 行) HJ 543-2009	0.0025mg/m ³	冷原子吸收微分测汞仪 JLBG-208
	铬及其化合物(以 Cr 计)	空气和废气 颗粒物中铅等金 属元素的测定 电感耦合等离	0.0003mg/m ³	电感耦合等离子体质谱仪 (ICP-MS)
	砷及其化合物(以 As 计)	子体质谱法 HJ 657-2013 及修改单	0.0002mg/m ³	NexION 1000
厂界噪声	厂界噪声	工业企业厂界环境噪声排放 标准 GB 12348-2008		多功能声级计 AWA5688

报告结束

附录

报告编号 A2230677304104C

第78页共91页

附录: 焚烧炉废气烟气参数

样品编号	烟温℃	流速 m/s	截面 m ²	含氧量%	标干流量 m³/h
HFR91607081	76	3.0	1.7671	11.8	12780
HFR91607082	76	3.0	1.7671	10.2	12780
HFR91607083	76	3.0	1.7671	9.7	12780
HFR91607084	76	3.0	1.7671	11.4	12780
HFR91607085	66	3.2	1.7671	10.0	14618
HFR91607086	66	3.2	1.7671	10.2	14618
HFR91607087	66	3.2	1.7671	9.5	14618
HFR91607088	66	3.2	1.7671	11.1	14618
HFR91607089	80	3.5	1.7671	10.5	15444
HFR91607090	80	3.5	1.7671	9.7	15444
HFR91607091	80	3.5	1.7671	9.3	15444
HFR91607092	80	3.5	1.7671	8.7	15444
HFR91607093	57	3.2	1.7671	10.5	15001
HFR91607094	57	3.2	1.7671	10.3	15001
HFR91607095	57	3.2	1.7671	10.4	15001
HFR91607096	57	3.2	1.7671	10.7	15001
HFR91607097	60	3.2	1.7671	10.8	14844
HFR91607098	60	3.2	1.7671	11.3	14844
HFR91607099	60	3.2	1.7671	11.1	14844
HFR91607100	60	3.2	1.7671	10.2	14844
HFR91607101	70	3.2	1.7671	10.2	14417
HFR91607102	70	3.2	1.7671	10.4	14417
HFR91607103	70	3.2	1.7671	10.5	14417
HFR91607104	70	3.2	1.7671	10.5	14417
HFR91607111	76	3.0	1.7671	11.8	12780
HFR91607112	76	3.0	1.7671	10.2	12780
HFR91607113	76	3.0	1.7671	9.7	12780
HFR91607114	76	3.0	1.7671	11.4	12780
HFR91607115	66	3.2	1.7671	10.0	14618
HFR91607116	66	3.2	1.7671	10.2	14618
HFR91607117	66	3.2	1.7671	9.5	14618
HFR91607118	66	3.2	1.7671	11.1	14618
HFR91607119	80	3.5	1.7671	10.5	15444
HFR91607120	80	3.5	1.7671	9.7	15444

附 录

报告编号 A2230677304104C

第79页共91页

样品编号	烟温℃	流速 m/s	截面 m ²	含氧量%	标干流量 m³/h
HFR91607121	80	3.5	1.7671	9.3	15444
HFR91607122	80	3.5	1.7671	8.7	15444
HFR91607123	57	3.2	1.7671	10.5	15001
HFR91607124	57	3.2	1.7671	10.3	15001
HFR91607125	57	3.2	1.7671	10.4	15001
HFR91607126	57	3.2	1.7671	10.7	15001
HFR91607127	60	3.2	1.7671	10.8	14844
HFR91607128	60	3.2	1.7671	11.3	14844
HFR91607129	60	3.2	1.7671	11.1	14844
HFR91607130	60	3.2	1.7671	10.2	14844
HFR91607131	70	3.2	1.7671	10.2	14417
HFR91607132	70	3.2	1.7671	10.4	14417
HFR91607133	70	3.2	1.7671	10.5	14417
HFR91607134	70	3.2	1.7671	10.5	14417
HFR91607135	76	3.0	1.7671	10.8	12780
HFR91607136	66	3.2	1.7671	10.2	14618
HFR91607137	80	3.5	1.7671	9.6	15444
HFR91607138	57	3.2	1.7671	10.5	15001
HFR91607139	60	3.2	1.7671	10.8	14844
HFR91607140	70	3.2	1.7671	10.4	14417
HFR91607141	76	3.0	1.7671	10.8	12780
HFR91607142	66	3.2	1.7671	10.2	14618
HFR91607143	80	3.5	1.7671	9.6	15444
HFR91607144	57	3.2	1.7671	10.5	15001
HFR91607145	60	3.2	1.7671	10.8	14844
HFR91607146	70	3.2	1.7671	10.4	14417
HFR91607147	58	3.2	1.7671	9.4	14974
HFR91607148	58	3.2	1.7671	11.1	15237
HFR91607149	66	3.0	1.7671	10.4	13858
HFR91607150	67	3.6	1.7671	11.4	16354
HFR91607151	69	3.4	1.7671	9.9	15241
HFR91607152	75	3.4	1.7671	9.6	14836
HFR91607153	76	3.0	1.7671	11.8	12780
HFR91607154	76	3.0	1.7671	10.2	12780
HFR91607155	76	3.0	1.7671	9.7	12780
HFR91607156	76	3.0	1.7671	11.4	12780

附录

报告编号 A2230677304104C

第80页共91页

样品编号	烟温℃	流速 m/s	截面 m2	含氧量%	标干流量 m3/h
HFR91607157	66	3.2	1.7671	10.0	14618
HFR91607158	66	3.2	1.7671	10.2	14618
HFR91607159	66	3.2	1.7671	9.5	14618
HFR91607160	66	3.2	1.7671	11.1	14618
HFR91607161	80	3.5	1.7671	10.5	15444
HFR91607162	80	3.5	1.7671	9.7	15444
HFR91607163	80	3.5	1.7671	9.3	15444
HFR91607164	80	3.5	1.7671	8.7	15444
HFR91607165	57	3.2	1.7671	10.5	15001
HFR91607166	57	3.2	1.7671	10.3	15001
HFR91607167	57	3.2	1.7671	10.4	15001
HFR91607168	57	3.2	1.7671	10.7	15001
HFR91607169	60	3.2	1.7671	10.8	14844
HFR91607170	60	3.2	1.7671	11.3	14844
HFR91607171	60	3.2	1.7671	11.1	14844
HFR91607172	60	3.2	1.7671	10.2	14844
HFR91607173	70	3.2	1.7671	10.2	14417
HFR91607174	70	3.2	1.7671	10.4	14417
HFR91607175	70	3.2	1.7671	10.5	14417
HFR91607176	70	3.2	1.7671	10.5	14417
HFR91607177	58	3.2	1.7671	9.4	14974
HFR91607178	58	3.2	1.7671	11.1	15237
HFR91607179	66	3.0	1.7671	10.4	13858
HFR91607180	67	3.6	1.7671	11.4	16354
HFR91607181	69	3.4	1.7671	9.9	15241
HFR91607182	75	3.4	1.7671	9.6	14836
HFR91607183	76	3.0	1.7671	10.8	12780
HFR91607184	66	3.2	1.7671	10.2	14618
HFR91607185	80	3.5	1.7671	9.6	15444
HFR91607186	57	3.2	1.7671	10.5	15001
HFR91607187	60	3.2	1.7671	10.8	14844
HFR91607188	70	3.2	1.7671	10.4	14417

附录

报告编号 A2230677304104C

第81页共91页

样品编号	截面 m ²
HFR91607907	1.7671
HFR91607908	1.7671
HFR91607909	1.7671
HFR91607910	1.7671
HFR91607911	1.7671
HFR91607912	1.7671

附 录

报告编号 A2230677304104C

第82页共91页

附录:工业废气(无组织)气象参数

	100	气象参数	ά	温度℃	大气压 kPa	相对湿度%	风速 m/s	风向
(°)		(6)	第1次	24.4	101.6	85.8	1.4	东风
	总	2025-	第2次	27.1	101.4	80.5	1.3	东风
	悬	09-27	第3次	27.9	101.3	77.6	1.3	东风
厂界上风	浮		第4次	28.2	101.2	75.6	1.3	东风
向 1#	颗		第1次	23.9	101.2	88.2	1.7	西风
	粒	2025-	第2次	26.8	101.2	75.3	1.4	西风
	物	09-28	第3次	27.1	101.2	75.1	1.3	西风
			第4次	29.3	101.0	61.6	1.6	西风
40			第1次	24.4	101.6	85.8	1.4	东风
		2025-	第2次	27.1	101.4	80.5	1.3	东风
		09-27	第3次	27.9	101.3	77.6	1.3	东风
(甲甲		第4次	28.2	101.2	75.6	1.3	东风
	苯		第1次	23.9	101.2	88.2	1.7	西风
	4	2025-	第2次	26.8	101.2	75.3	1.4	西风
		09-28	第3次	27.1	101.2	75.1	1.3	西风
			第4次	29.3	101.0	61.6	1.6	西风
			第1次	24.4	101.6	85.8	1.4	东风
снты	总	2025-	第2次	27.1	101.4	80.5	1.3	东风
厂界下风	悬	09-27	第3次	27.9	101.3	77.6	1.3	东风
向 2#/厂界 下风向 3#/	浮		第4次	28.2	101.2	75.6	1.3	东风
厂界下风	颗		第1次	23.9	101.2	88.2	1.7	西风
) 介下风 向 4#	粒	2025-	第2次	26.8	101.2	75.3	1.4	西风
[F] 4##	物	09-28	第3次	27.1	101.2	75.1	1.3	西风
			第4次	29.3	101.0	61.6	1.6	西风
			第1次	24.4	101.6	85.8	1.4	东风
		2025-	第2次	27.1	101.4	80.5	1.3	东风
		09-27	第3次	27.9	101.3	77.6	1.3	东风
	48	1	第4次	28.2	101.2	75.6	1.3	东风
	氨		第1次	23.9	101.2	88.2	1.7	西风
	-0-	2025-	第2次	26.8	101.2	75.3	1.4	西风
		09-28	第3次	27.1	101.2	75.1	1.3	西风
	9	1	第4次	29.3	101.0	61.6	1.6	西风

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint \ call: 0755-33681700 \\ Complaint \ E-mail: complaint \ @cti-cert.com \\ Complaint \ Complaint \ E-mail: complaint \ Complaint \ Complaint \ E-mail: complaint \ Complaint$

附录

报告编号 A2230677304104C

第83页共91页

- 1.0			1.00 % 1				1 20 % 1	
(رو	气象参数	t	温度℃	大气压 kPa	相对湿 度%	风速 m/s	风向
			第1次	27.9	101.3	77.6	1.3	东风
		2025-	第2次	29.1	101.2	73.2	1.2	东风
()	/=i	09-27	第3次	28.2	101.2	75.6	1.3	东风
	氯化		第4次	27.9	101.2	77.9	1.5	东风
	氢		第1次	23.9	101.2	88.2	1.7	西风
,	£(2025-	第2次	26.8	101.2	75.3	1.4	西风
((1	09-28	第3次	27.1	101.2	75.1	1.3	西风
//			第4次	29.3	101.0	61.6	1.6	西风
			第1次	24.4	101.6	85.8	1.4	东风
		2025-	第2次	27.1	101.4	80.5	1.3	东风
		09-27	第3次	27.9	101.3	77.6	1.3	东风
)	甲	10	第4次	28.2	101.2	75.6	1.3	东风
	苯		第1次	23.9	101.2	88.2	1.7	西风
		2025-	第2次	26.8	101.2	75.3	1.4	西风
界下风	6.	09-28	第3次	27.1	101.2	75.1	1.3	西风
2#/厂界			第4次	29.3	101.0	61.6	1.6	西风
风向 3#/			第1次	24.4	101.6	85.8	1.4	东风
界下风 向 4#			第2次	24.4	101.6	85.8	1.4	东风
[D] 4#			第3次	24.4	101.6	85.8	1.4	东风
(0.		6	第4次	24.4	101.6	85.8	1.4	东风
/		13	第 5 次	27.1	101.4	80.5	1.3	东风
			第6次	27.1	101.4	80.5	1.3	东风
			第7次	27.1	101.4	80.5	1.3	东风
	甲	2025-	第8次	27.1	101.4	80.5	1.3	东风
(6	醇	09-27	第9次	27.9	101.3	77.6	1.3	东风
			第10次	27.9	101.3	77.6	1.3	东风
			第11次	27.9	101.3	77.6	1.3	东风
			第12次	27.9	101.3	77.6	1.3	东风
~)		(0	第13次	28.2	101.2	75.6	1.3	东风
		13	第 14 次	28.2	101.2	75.6	1.3	东风
			第 15 次	28.2	101.2	75.6	1.3	东风
			第 16 次	28.2	101.2	75.6	1.3	东风

附录

报告编号 A2230677304104C

第84页共91页

/		气象参数	t	温度℃	大气压 kPa	相对湿 度%	风速 m/s	风向
			第1次	23.9	101.2	88.2	1.7	西风
		1	第2次	23.9	101.2	88.2	1.7	西风
37)		(6	第3次	23.9	101.2	88.2	1.7	西风
			第 4 次	23.9	101.2	88.2	1.7	西风
			第 5 次	26.8	101.2	75.3	1.4	西风
			第6次	26.8	101.2	75.3	1.4	西风
	40	2025-	第7次	26.8	101.2	75.3	1.4	西风
	甲		第8次	26.8	101.2	75.3	1.4	西风
	醇	09-28	第9次	27.1	101.2	75.1	1.3	西风
			第 10 次	27.1	101.2	75.1	1.3	西风
			第11次	27.1	101.2	75.1	1.3	西风
		(6	第 12 次	27.1	101.2	75.1	1.3	西风
			第13次	29.3	101.0	61.6	1.6	西风
			第 14 次	29.3	101.0	61.6	1.6	西风
厂界下风	130		第 15 次	29.3	101.0	61.6	1.6	西风
向 2#/厂界	67	1	第16次	29.3	101.0	61.6	1.6	西风
下风向 3#/			第1次	24.4	101.6	85.8	1.4	东风
厂界下风			第2次	27.1	101.4	80.5	1.3	东风
向 4#			第3次	27.9	101.3	77.6	1.3	东风
	硫		第4次	28.2	101.2	75.6	1.3	东风
	化	10	第1次	23.9	101.2	88.2	1.7	西风
	氢	2025-	第2次	26.8	101.2	75.3	1.4	西风
		09-28	第3次	27.1	101.2	75.1	1.3	西风
	(3)		第4次	29.3	101.0	61.6	1.6	西风
	5		第1次	24.4	101.6	85.8	1.4	东风
		2025-	第2次	27.1	101.4	80.5	1.3	东风
100000	臭	09-27	第3次	27.9	101.3	77.6	1.3	东风
	气		第4次	28.2	101.2	75.6	1.3	东风
	浓	(e	第1次	23.9	101.2	88.2	1.7	西风
	度	2025-	第2次	26.8	101.2	75.3	1.4	西风
		09-28	第3次	27.1	101.2	75.1	1.3	西风
			第4次	29.3	101.0	61.6	1.6	西风

附录

报告编号 A2230677304104C

第85页共91页

/	9	气象参数	t v	温度℃	大气压	相对湿	风速 m/s	风向
			第1次	24.4	kPa 101.6	度%	1.4	东风
			1000 1000	24.4	0.7000.70070	85.8	200	900 2 00000000
		G	第2次	24.4	101.6	85.8	1.4	东风
		10	第 3 次	24.4	101.6	85.8	1.4	东风
			第4次	24.4	101.6	85.8	1.4	东风
			第5次	27.1	101.4	80.5	1.3	东风
	00		第6次	27.1	101.4	80.5	1.3	东风
	3		第7次	27.1	101.4	80.5	1.3	东风
		2025-	第8次	27.1	101.4	80.5	1.3	东风
		09-27	第9次	27.9	101.3	77.6	1.3	东风
-0-			第 10 次	27.9	101.3	77.6	1.3	东风
		6	第11次	27.9	101.3	77.6	1.3	东风
		10	第 12 次	27.9	101.3	77.6	1.3	东风
			第13次	28.2	101.2	75.6	1.3	东风
-н-гы	-11-		第 14 次	28.2	101.2	75.6	1.3	东风
厂界下风 句 2#/厂界	非甲		第 15 次	28.2	101.2	75.6	1.3	东风
			第16次	28.2	101.2	75.6	1.3	东风
下风向 3#/ 厂界下风	烷	总	第1次	23.9	101.2	88.2	1.7	西风
ラ 4#	尽		第2次	23.9	101.2	88.2	1.7	西风
PJ 4##	大工		第3次	23.9	101.2	88.2	1.7	西风
		6	第4次	23.9	101.2	88.2	1.7	西风
		13	第 5 次	26.8	101.2	75.3	1.4	西风
			第6次	26.8	101.2	75.3	1.4	西风
			第7次	26.8	101.2	75.3	1.4	西风
	(1)	2025-	第8次	26.8	101.2	75.3	1.4	西风
	5)	09-28	第9次	27.1	101.2	75.1	1.3	西风
			第10次	27.1	101.2	75.1	1.3	西风
			第11次	27.1	101.2	75.1	1.3	西风
			第 12 次	27.1	101.2	75.1	1.3	西风
		(0	第13次	29.3	101.0	61.6	1.6	西风
		13	第 14 次	29.3	101.0	61.6	1.6	西风
			第 15 次	29.3	101.0	61.6	1.6	西风
			第 16 次	29.3	101.0	61.6	1.6	西风

附录

报告编号 A2230677304104C

第86页共91页

	100		[67 6]				1.65	
	(0)	气象参数	it .	温度℃	大气压 kPa	相对湿 度%	风速 m/s	风向
			第1次	26.7	101.4	80.0	1.6	东风
			第2次	26.7	101.4	80.0	1.6	东风
		(6	第3次	26.7	101.4	80.0	1.6	东风
			第4次	26.7	101.4	80.0	1.6	东风
			第 5 次	29.1	101.2	73.2	1.2	东风
	100		第6次	29.1	101.2	73.2	1.2	东风
			第7次	29.1	101.2	73.2	1.2	东风
		2025-	第8次	29.1	101.2	73.2	1.2	东风
		09-27	第9次	27.9	101.2	77.9	1.5	东风
			第 10 次	27.9	101.2	77.9	1.5	东风
			第11次	27.9	101.2	77.9	1.5	东风
		(6	第12次	27.9	101.2	77.9	1.5	东风
			第13次	25.8	101.2	86.3	1.2	东风
			第 14 次	25.8	101.2	86.3	1.2	东风
	非		第15次	25.8	101.2	86.3	1.2	东风
厂内 5#/	甲		第16次	25.8	101.2	86.3	1.2	东风
厂内 6#	烷		第1次	24.0	101.2	86.7	1.8	西风
	总		第2次	24.0	101.2	86.7	1.8	西风
	烃		第3次	24.0	101.2	86.7	1.8	西风
		6	第4次	24.0	101.2	86.7	1.8	西风
		10	第5次	26.8	101.2	75.3	1.4	西风
			第6次	26.8	101.2	75.3	1.4	西风
			第7次	26.8	101.2	75.3	1.4	西风
	12	2025-	第8次	26.8	101.2	75.3	1.4	西风
	(6)	09-28	第9次	28.0	101.2	68.0	1.0	西风
		100000	第 10 次	28.0	101.2	68.0	1.0	西风
			第11次	28.0	101.2	68.0	1.0	西风
			第12次	28.0	101.2	68.0	1.0	西风
		(e	第13次	29.3	101.1	61.6	1.6	西风
		1/2	第 14 次	29.3	101.1	61.6	1.6	西风
			第 15 次	29.3	101.1	61.6	1.6	西风
	400		第 16 次	29.3	101.1	61.6	1.6	西风

附 录

报告编号 A2230677304104C

第87页共91页

附录:工业废气(有组织)烟气参数

样品编号	烟温℃	流速 m/s	截面 m ²	含湿量%	标干流量 m³/h
HFR91607189	24	5.0	0.1590	3.8	2535
HFR91607190	24	5.0	0.1590	3.8	2535
HFR91607191	24	5.0	0.1590	3.8	2535
HFR91607192	24	5.0	0.1590	3.8	2535
HFR91607193	24	5.7	0.1590	3.8	2880
HFR91607194	24	5.7	0.1590	3.8	2880
HFR91607195	24	5.7	0.1590	3.8	2880
HFR91607196	24	5.7	0.1590	3.8	2880
HFR91607197	24	5.7	0.1590	3.8	2880
HFR91607198	24	5.7	0.1590	3.8	2880
HFR91607199	24	5.7	0.1590	3.8	2880
HFR91607200	24	5.7	0.1590	3.8	2880
HFR91607201	23	6.2	0.1590	4.1	3161
HFR91607202	23	6.2	0.1590	4.1	3161
HFR91607203	23	6.2	0.1590	4.1	3161
HFR91607204	23	6.2	0.1590	4.1	3161
HFR91607205	23	6.3	0.1590	4.0	3190
HFR91607206	23	6.3	0.1590	4.0	3190
HFR91607207	23	6.3	0.1590	4.0	3190
HFR91607208	23	6.3	0.1590	4.0	3190
HFR91607209	23	6.3	0.1590	3.9	3207
HFR91607210	23	6.3	0.1590	3.9	3207
HFR91607211	23	6.3	0.1590	3.9	3207
HFR91607212	23	6.3	0.1590	3.9	3207
检测点:2#车间粉码	P包装尾气排放口	DA005			
样品编号	烟温℃	流速 m/s	截面 m ²	含湿量%	标干流量 m³/h
HFR91607213	35	3.7	0.0707	4.4	806
HFR91607214	32	3.7	0.0707	4.6	796
HFR91607215	30	3.6	0.0707	4.5	790
HFR91607216	30	3.8	0.0707	4.2	836
HFR91607217	31	4.0	0.0707	4.3	867
HFR91607218	31	4.1	0.0707	4.2	900

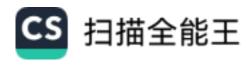
附录

报告编号 A2230677304104C

第88页共91页

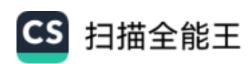
检测点:2#RTO 尾⁴ 样品编号	烟温℃	流速 m/s	截面 m ²	含湿量%	标干流量 m³/h
HFR91607219	73	3.3	2.0106	5.6	17706
HFR91607220	72	3.3	2.0106	5.4	17808
HFR91607221	59	3.3	2.0106	5.4	
	100000	9,500,500	1000 C 1000 C 1000 C		18771
HFR91607222	70	3.2	2.0106	5.2	17378
HFR91607223	66	3.1	2.0106	5.4	17022
HFR91607224	62	3.3	2.0106	5.3	18383
HFR91607225	73	3.3	2.0106	5.6	17706
HFR91607226	73	3.3	2.0106	5.6	17706
HFR91607227	73	3.3	2.0106	5.6	17706
HFR91607228	73	3.3	2.0106	5.6	17706
HFR91607229	72	3.3	2.0106	5.4	17808
HFR91607230	72	3.3	2.0106	5.4	17808
HFR91607231	72	3.3	2.0106	5.4	17808
HFR91607232	72	3.3	2.0106	5.4	17808
HFR91607233	59	3.3	2.0106	5.4	18771
HFR91607234	59	3.3	2.0106	5.4	18771
HFR91607235	59	3.3	2.0106	5.4	18771
HFR91607236	59	3.3	2.0106	5.4	18771
HFR91607237	70	3.2	2.0106	5.2	17378
HFR91607238	70	3.2	2.0106	5.2	17378
HFR91607239	70	3.2	2.0106	5.2	17378
HFR91607240	70	3.2	2.0106	5.2	17378
HFR91607241	66	3.1	2.0106	5.4	17022
HFR91607242	66	3.1	2.0106	5.4	17022
HFR91607243	66	3.1	2.0106	5.4	17022
HFR91607244	66	3.1	2.0106	5.4	17022
HFR91607245	62	3.3	2.0106	5.3	18383
HFR91607246	62	3.3	2.0106	5.3	18383
HFR91607247	62	3.3	2.0106	5.3	18383
HFR91607248	62	3.3	2.0106	5.3	18383
HFR91607249	73	3.3	2.0106	5.6	17706
HFR91607250	72	3.3	2.0106	5.4	17808
HFR91607251	59	3.3	2.0106	5.4	18771
HFR91607252	70	3.2	2.0106	5.2	17378

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint \ call: 0755-33681700 \\ Complaint \ E-mail: complaint \ @cti-cert.com \\ Complaint \ Complaint \ E-mail: complaint \ Complaint \ Complaint \ E-mail: complaint \ Complaint$


样品编号	烟温℃	流速 m/s	截面 m2	含湿量%	标干流量 m3/h
HFR91607253	66	3.1	2.0106	5.4	17022
HFR91607254	62	3.3	2.0106	5.3	18383
HFR91607255	73	3.3	2.0106	5.6	17706
HFR91607256	73	3.3	2.0106	5.6	17706
HFR91607257	73	3.3	2.0106	5.6	17706
HFR91607258	73	3.3	2.0106	5.6	17706
HFR91607259	72	3.3	2.0106	5.4	17808
HFR91607260	72	3.3	2.0106	5.4	17808
HFR91607261	72	3.3	2.0106	5.4	17808
HFR91607262	72	3.3	2.0106	5.4	17808
HFR91607263	59	3.3	2.0106	5.4	18771
HFR91607264	59	3.3	2.0106	5.4	18771
HFR91607265	59	3.3	2.0106	5.4	18771
HFR91607266	59	3.3	2.0106	5.4	18771
HFR91607267	70	3.2	2.0106	5.2	17378
HFR91607268	70	3.2	2.0106	5.2	17378
HFR91607269	70	3.2	2.0106	5.2	17378
HFR91607270	70	3.2	2.0106	5.2	17378
HFR91607271	66	3.1	2.0106	5.4	17022
HFR91607272	66	3.1	2.0106	5.4	17022
HFR91607273	66	3.1	2.0106	5.4	17022
HFR91607274	66	3.1	2.0106	5.4	17022
HFR91607275	62	3.3	2.0106	5.3	18383
HFR91607276	62	3.3	2.0106	5.3	18383
HFR91607277	62	3.3	2.0106	5.3	18383
HFR91607278	62	3.3	2.0106	5.3	18383
HFR91607279	73	3.3	2.0106	5.6	17706
HFR91607280	73	3.3	2.0106	5.6	17706
HFR91607281	73	3.3	2.0106	5.6	17706
HFR91607282	73	3.3	2.0106	5.6	17706
HFR91607283	72	3.3	2.0106	5.4	17808
HFR91607284	72	3.3	2.0106	5.4	17808
HFR91607285	72	3.3	2.0106	5.4	17808
HFR91607286	72	3.3	2.0106	5.4	17808
HFR91607287	59	3.3	2.0106	5.4	18771
HFR91607288	59	3.3	2.0106	5.4	18771

AN IT THE TAL A

CTI华测检测


附录

报告编号 A2230677304104C

第90页共91页

样品编号	烟温℃	流速 m/s	截面 m2	含湿量%	标干流量 m3/h
HFR91607289	59	3.3	2.0106	5.4	18771
HFR91607290	59	3.3	2.0106	5.4	18771
HFR91607291	70	3.2	2.0106	5.2	17378
HFR91607292	70	3.2	2.0106	5.2	17378
HFR91607293	70	3.2	2.0106	5.2	17378
HFR91607294	70	3.2	2.0106	5.2	17378
HFR91607295	66	3.1	2.0106	5.4	17022
HFR91607296	66	3.1	2.0106	5.4	17022
HFR91607297	66	3.1	2.0106	5.4	17022
HFR91607298	66	3.1	2.0106	5.4	17022
HFR91607299	62	3.3	2.0106	5.3	18383
HFR91607300	62	3.3	2.0106	5.3	18383
HFR91607301	62	3.3	2.0106	5.3	18383
HFR91607302	62	3.3	2.0106	5.3	18383
HFR91607303	73	3.3	2.0106	5.6	17706
HFR91607304	72	3.3	2.0106	5.4	17808
HFR91607305	59	3.3	2.0106	5.4	18771
HFR91607306	70	3.2	2.0106	5.2	17378
HFR91607307	66	3.1	2.0106	5.4	17022
HFR91607308	62	3.3	2.0106	5.3	18383
HFR91607309	73	3.3	2.0106	5.6	17706
HFR91607310	73	3.3	2.0106	5.6	17706
HFR91607311	73	3.3	2.0106	5.6	17706
HFR91607312	73	3.3	2.0106	5.6	17706
HFR91607313	72	3.3	2.0106	5.4	17808
HFR91607314	72	3.3	2.0106	5.4	17808
HFR91607315	72	3.3	2.0106	5.4	17808
HFR91607316	72	3.3	2.0106	5.4	17808
HFR91607317	59	3.3	2.0106	5.4	18771
HFR91607318	59	3.3	2.0106	5.4	18771
HFR91607319	59	3.3	2.0106	5.4	18771
HFR91607320	59	3.3	2.0106	5.4	18771
HFR91607321	70	3.2	2.0106	5.2	17378
HFR91607322	70	3.2	2.0106	5.2	17378
HFR91607323	70	3.2	2.0106	5.2	17378
HFR91607324	70	3.2	2.0106	5.2	17378

第91页共91页

样品编号	烟温℃	流速 m/s	截面 m2	含湿量%	标干流量 m3/h	
HFR91607325	66	3.1	2.0106	5.4	17022	
HFR91607326	66	3.1	2.0106	5.4	17022	
HFR91607327	66	3.1	2.0106	5.4	17022	
HFR91607328	66	3.1	2.0106	5.4	17022	
HFR91607329	62	3.3	2.0106	5.3	18383	
HFR91607330	62	3.3	2.0106	5.3	18383	
HFR91607331	62	3.3	2.0106	5.3	18383	
HFR91607332	62	3.3	2.0106	5.3	18383	
检测点:盐酸储罐	呼吸废气排放口	DA006				
	样品编号		截面 m ²			
- 0.00	HFR91607477	5.00	0.0314 0.0314 0.0314			
40	HFR91607478	G.				
3	HFR91607479	(0)				
HFR91607480			0.0314			
	HFR91607481		0.0314			
	HFR91607482			0.0314	(3)	

附录结束

附件 10-2 土壤和地下水检测报告

CTI华测检测

检测报告

报告编号 A2230677304105C

第1页共28页

委托单位 安徽佳先功能助剂股份有限公司

受检单位 安徽佳先功能助剂股份有限公司

受检单位地址 安徽省蚌埠市淮上区沫河口精细化工园银湖路 280 号

样品类型 地下水、土壤

报告用途 建设项目竣工环境保护验收监测

安徽华测台则技术有限公司

No.21960A5D54

报告说明

报告编号 A2230677304105C

第 2 页共 28 页

- 1. 本报告不得涂改、增删,无签发人签字无效。
- 2. 本报告无检验检测专用章、骑缝章无效。
- 3. 未经 CTI 书面批准,不得部分复制检测报告。
- 4. 本报告未经同意不得作为商业广告使用。
- 5. 现场运行设备设施参数由客户提供。标准限值由客户提供;分析方法、频次与标准不一 致时,检测结果作参考使用。
- 6. 除客户特别声明并支付样品管理费,所有超过标准规定时效期的样品均不再留样。
- 7. 对本报告有疑议,请在收到报告10天之内与本公司联系。

安徽华测检测技术有限公司

联系地址:安徽省合肥市经济技术开发区新港工业园 青龙潭路 3435 号智能科技园(南区)C3 栋 4 层

邮政编码: 230601

编制:

报告质量投诉电话: 0551-63893970

签发:

签发人姓名:

张锋

签发日期:

2025/10/20

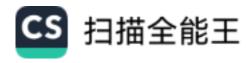
检测结果

报告编号 A2230677304105C

第 3 页共 28 页

附:检测布点图

说明: ☆地下水采样点 ■土壤采样点


检测结果

报告编号 A2230677304105C

第 4 页共 28 页

表1:

样品信息:					
样品类型	地下水				
点位名称	厂内西北角 GW1	2025-09-30			
样品状态	第2次:无色、无异味	C: 无色、无异味、适			(C)
经纬度	E:117.589893° N:3	2.982126°	(21)		(20)
检测结果:					
4.04	M 175 CI	□ 	4	吉果	M (-)
企	N项目	采样日期	第1次	第2次	单位
		2025-09-27	0.0004L	0.0004L	mg/L
1,1	承心师	2025-09-28	0.0004L	0.0004L	mg/L
1,2-二氯乙烯	1,2-二氯乙烯(总量)		0.0004L	0.0004L	mg/L
	反-1,2-二氯乙烯	2025-09-27	0.0003L	0.0003L	mg/L
	顺式-1,2-二氯乙烯		0.0004L	0.0004L	mg/L
	1,2-二氯乙烯(总量)	~)	0.0004L	0.0004L	mg/L
	反-1,2-二氯乙烯	2025-09-28	0.0003L	0.0003L	mg/L
	顺式-1,2-二氯乙烯		0.0004L	0.0004L	mg/L
-0-	T /#	2025-09-27	7.3	7.3	无量纲
pı	H值	2025-09-28	7.1	7.1	无量纲
	z #:	2025-09-27	0.0003L	0.0003L	mg/L
2	乙苯	2025-09-28	0.0003L	0.0003L	mg/L
	二甲苯 (总量)		0.0005L	0.0005L	mg/L
	对/间二甲苯	2025-09-27	0.0005L	0.0005L	mg/L
二甲苯	邻二甲苯		0.0002L	0.0002L	mg/L
一十个	二甲苯(总量)		0.0005L	0.0005L	mg/L
	对/间二甲苯	2025-09-28	0.0005L	0.0005L	mg/L
	邻二甲苯		0.0002L	0.0002L	mg/L
सार प्रथ	酸盐氮	2025-09-27	0.011	0.011	mg/L
717.4月	政血炎	2025-09-28	0.011	0.010	mg/L
<u> </u>	价铬	2025-09-27	0.004L	0.004L	mg/L
^	מיות	2025-09-28	0.004L	0.004L	mg/L
	補産	2025-09-27	407	414	mg/L
思	硬度	2025-09-28	447	## ## ## ## ## ## ## ## ## ##	mg/L

检测结果

报告编号 A22306773041050

第 5 页共 28 页

检测结果:	/				
+^	:测项目	采样日期	结	i果	单位
4π⁄	2.例3只日	木件口朔	第1次	第2次	1 単位
	军发酚	2025-09-27	0.0003L	0.0003L	mg/L
3 1	半 及町	2025-09-28	0.0003L	0.0003L	mg/L
4	氰化物	2025-09-27	0.266	0.256	mg/L
Đ	职化初	2025-09-28	0.227	0.255	mg/L
/°5	氨氮	2025-09-27	0.076	0.120	mg/L
	安美	2025-09-28	0.210	0.092	mg/L
<i>I</i>	氯化物	2025-09-27	73.3	73.3	mg/L
য়	烈化初	2025-09-28	73.8	72.6	mg/L
	与 基	2025-09-27	0.0002L	0.0002L	mg/L
	氯苯	2025-09-28	0.0002L	0.0002L	mg/L
9) ,	≓ (Iethan	2025-09-27	0.001L	0.001L	mg/L
F	氰化物	2025-09-28	0.001L	0.001L	mg/L
汞	2025-09-27	0.00004L	0.00004L	mg/L	
	水	2025-09-28	0.00004L	0.00004L	mg/L
ेक्ट्रेड <i>वि</i>	溶解性固体	2025-09-27	674	688	mg/L
1合用	胜1生回14	2025-09-28	702	第 2 次 0.0003L 0.0003L 0.256 0.255 0.120 0.092 73.3 72.6 0.0002L 0.001L 0.001L 0.0004L 0.0004L 0.00004L	mg/L
	甲苯	2025-09-27	0.0003L	0.0003L	mg/L
	中本	2025-09-28	0.0003L	0.0003L	mg/L
(1)	砷	2025-09-27	0.0003L	0.0003L	mg/L
	14中	2025-09-28	0.0003L	0.0003L	mg/L
T		2025-09-27	0.003L	0.003L	mg/L
- I	元化初	2025-09-28	0.003L	0.003L	mg/L
	流酸盐	2025-09-27	110	106	mg/L
(C) A	元 百文 五.	2025-09-28	115	117	mg/L
+	毛氧量	2025-09-27	2.0	1.7	mg/L
*	七判里	2025-09-28	1.3	1.0	mg/L
in a	各座	2025-09-27	0	0	度
	色度	2025-09-28	0	0	度
-W:	:) 	2025-09-27	0.000004L	0.000004L	mg/L
本	并(a)芘	2025-09-28	0.000004L	0.000004L	mg/L

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint \ call: 0755-33681700 \\ Complaint \ E-mail: complaint \ @cti-cert.com \\ Complaint \ Complaint \ E-mail: complaint \ Complaint \ Complaint \ E-mail: complaint \ Complaint$

检测结果

报告编号 A2230677304105C

第6页共28页

检测结果:	6			6			6
检测项目		W.	采样日期		结	果	34 12-
		木	忓口朔	第1	次	第2次	单位
铁		202	5-09-27	0.0)5	0.04	mg/L
		202	5-09-28	0.0)5	0.07	mg/L
铅		202	5-09-27	0.00	494	0.00131	mg/L
扣		202	5-09-28	0.00	506	0.00290	mg/L
锌		202	5-09-27	0.0	67	0.079	mg/L
(C)	(€	202	5-09-28	0.0	76	0.074	mg/L
锰	6	202	5-09-27	0.0	14	0.010	mg/L
Villa.		202	5-09-28	0.0	10	0.010	mg/L
镉	-05	202	5-09-27	0.000	05L	0.00005L	mg/L
EALL		202	5-09-28	0.000	05L	0.00005L	mg/L
硝酸盐氮		202	5-09-27	3.6	51	4.30	mg/L
1月12年,第	24	202	5-09-28	4.0)4	4.11	mg/L
羊品编号:				-00		70	21.
检测	项目	(II)	采样日	期		第1次	第2次
1,1-二分		~)	2025-09	2025-09-27 HFI		R91613047	HFR91613048
1,2-二氯乙烯	1,2-二氯乙烯(总量)	2025-09-27 H		HF	R91613047	HFR91613048
1,2-二氯乙烯	反-1,2-二氯	乙烯	2025-09-27		HFR91613047		HFR91613048
1,2-二氯乙烯	顺式-1,2-二氯	【乙烯	2025-09	9-27 HF		R91613047	HFR91613048
pН	值		2025-09-27 Н		HF	R91613067	HFR91613068
Z	苯		2025-09-27		HFR91613047		HFR91613048
二甲苯	二甲苯(总	量)	2025-09	-27	HF	R91613047	HFR91613048
二甲苯	对/间二甲	苯	2025-09-27		HFR91613047		HFR91613048
二甲苯	邻二甲者	Ë	2025-09	-27	HF	R91613047	HFR91613048
亚硝酸盐氮			2025-09	-27	HF	R91613027	HFR91613028
六价铬			2025-09	-27	HF	R91613019	HFR91613020
总硬度			2025-09	-27	HF	R91613059	HFR91613060
挥发酚			2025-09	-27	HF	R91613071	HFR91613072
氟化	上物		2025-09	-27	HF	R91613031	HFR91613032
氨	氮		2025-09	-27	HF	R91613023	HFR91613024
氯化	上物		2025-09	-27	HF	R91613031	HFR91613032
氣	苯		2025-09	-27	HF	R91613047	HFR91613048

检测结果

报告编号 A22306773041050

第7页共28页

详品编号:	(6)	(G)	\	(6)
十m細 ケ: 检測 []]	省日	采样日期	第1次	第2次
(ATT 100 CO.)			515 7 8 9	-11 - 2 -
氰化		2025-09-27	HFR91613035	HFR91613036
汞 溶解性固体		2025-09-27	HFR91613055	HFR91613056
111731 100		2025-09-27	HFR91613027	HFR91613028
甲		2025-09-27	HFR91613047	HFR91613048
砷	71 2	2025-09-27	HFR91613055	HFR91613056
硝酸		2025-09-27	HFR91613031	HFR91613032
硫化	10.0	2025-09-27	HFR91613039	HFR91613040
硫酸		2025-09-27	HFR91613031	HFR91613032
耗氧	量	2025-09-27	HFR91613063	HFR91613064
色质	度	2025-09-27	HFR91613027	HFR91613028
苯并(a)芘	2025-09-27	HFR91613051	HFR91613052
铁		2025-09-27	HFR91613043	HFR91613044
智	i	2025-09-27	HFR91613043	HFR91613044
锌	1	2025-09-27	HFR91613043	HFR91613044
锰		2025-09-27	HFR91613043	HFR91613044
锦	(C)	2025-09-27	HFR91613043	HFR91613044
1,1-二分	夏乙烯	2025-09-28	HFR91613049	HFR91613050
1,2-二氯乙烯	1,2-二氯乙烯(总量)	2025-09-28	HFR91613049	HFR91613050
1,2-二氯乙烯	反-1,2-二氯乙烯	2025-09-28	HFR91613049	HFR91613050
1,2-二氯乙烯	顺式-1,2-二氯乙烯	2025-09-28	HFR91613049	HFR91613050
pH	值	2025-09-28	HFR91613069	HFR91613070
乙灵	苯	2025-09-28	HFR91613049	HFR91613050
二甲苯	二甲苯 (总量)	2025-09-28	HFR91613049	HFR91613050
二甲苯	对/间二甲苯	2025-09-28	HFR91613049	HFR91613050
二甲苯	邻二甲苯	2025-09-28	HFR91613049	HFR91613050
亚硝酸	盐氮	2025-09-28	HFR91613029	HFR91613030
六价	铬	2025-09-28	HFR91613021	HFR91613022
总硬	i度	2025-09-28	HFR91613061	HFR91613062
挥发	ご酚	2025-09-28	HFR91613073	HFR91613074
氟化	:物	2025-09-28	HFR91613033	HFR91613034
氨	2210	2025-09-28	HFR91613025	HFR91613026
氯化	N. 10.	2025-09-28	HFR91613033	HFR91613034

检测结果

报告编号 A2230677304105C

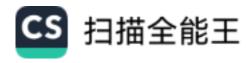
第 8 页共 28 页

(6)	6		(0)
	采样日期	第1次	第2次
	2025-09-28	HFR91613049	HFR91613050
	2025-09-28	HFR91613037	HFR91613038
	2025-09-28	HFR91613057	HFR91613058
	2025-09-28	HFR91613029	HFR91613030
	2025-09-28	HFR91613049	HFR91613050
(°)	2025-09-28	HFR91613057	HFR91613058
(85)	2025-09-28	HFR91613033	HFR91613034
	2025-09-28	HFR91613041	HFR91613042
	2025-09-28	HFR91613033	HFR91613034
	2025-09-28	HFR91613065	HFR91613066
	2025-09-28	HFR91613029	HFR91613030
	2025-09-28	HFR91613053	HFR91613054
	2025-09-28	HFR91613045	HFR91613046
	2025-09-28	HFR91613045	HFR91613046
	2025-09-28	HFR91613045	HFR91613046
(6,2)	2025-09-28	HFR91613045	HFR91613046
	2025-09-28	HFR91613045	HFR91613046
		2025-09-28 2025-09-28 2025-09-28 2025-09-28 2025-09-28 2025-09-28 2025-09-28 2025-09-28 2025-09-28 2025-09-28 2025-09-28 2025-09-28 2025-09-28 2025-09-28 2025-09-28 2025-09-28 2025-09-28	2025-09-28 HFR91613049 2025-09-28 HFR91613057 2025-09-28 HFR91613029 2025-09-28 HFR91613049 2025-09-28 HFR91613049 2025-09-28 HFR91613057 2025-09-28 HFR91613033 2025-09-28 HFR91613041 2025-09-28 HFR91613041 2025-09-28 HFR91613065 2025-09-28 HFR91613065 2025-09-28 HFR91613045 2025-09-28 HFR91613045 2025-09-28 HFR91613045 2025-09-28 HFR91613045 2025-09-28 HFR91613045 2025-09-28 HFR91613045

备注:

1.pH 值为现场检测。

2.结果有"L"表示未检出,其数值为该项目的检出限。


检测结果

报告编号 A2230677304105C

第9页共28页

表 2:

样品信息:						
样品类型	地下水					
点位名称	厂内东南角 GW2	检测日	月期	2025-09-27~2025-09-30		
样品状态	第2次:无色、无异味	C:无色、无味、透明			6	
经纬度	E:117.591747° N:3	2.982309°	(27)		(20)	
检测结果:	6					
K.A4	M-25 13	立 以 口 扣	4	洁果	M (-)	
1 €	则项目	采样日期	第1次	第2次	单位	
411-	・	2025-09-27	0.0004L	0.0004L	mg/L	
1,1	二氯乙烯	2025-09-28	0.0004L	0.0004L	mg/L	
反-	1,2-二氯乙烯(总量)		0.0004L	0.0004L	mg/L	
	反-1,2-二氯乙烯	2025-09-27	0.0003L	0.0003L	mg/L	
12一句才感	顺式-1,2-二氯乙烯		0.0004L	0.0004L	mg/L	
1,2-二氯乙烯	1,2-二氯乙烯(总量)	()	0.0004L	0.0004L	mg/L	
	反-1,2-二氯乙烯	2025-09-28	0.0003L	0.0003L	mg/L	
	顺式-1,2-二氯乙烯		0.0004L	0.0004L	mg/L	
-0	山楂	2025-09-27	7.1	7.1	无量纲	
p ₁	H值	2025-09-28	7.0	7.0	无量纲	
	z -\ -	2025-09-27	0.0003L	0.0003L	mg/L	
2	乙苯 -	2025-09-28	0.0003L	0.0003L	mg/L	
	二甲苯 (总量)		0.0005L	0.0005L	mg/L	
	对/间二甲苯	2025-09-27	0.0005L	0.0005L	mg/L	
二甲苯	邻二甲苯		0.0002L	0.0002L	mg/L	
一十个	二甲苯 (总量)		0.0005L	0.0005L	mg/L	
	对/间二甲苯	2025-09-28	0.0005L	0.0005L	mg/L	
	邻二甲苯		0.0002L	0.0002L	mg/L	
जार दक्ष	酸盐氮	2025-09-27	0.026	0.012	mg/L	
AK.14E	四至流炎	2025-09-28	0.021	第 2 次 0.0004L 0.0004L 0.0004L 0.0003L 0.0004L 0.0003L 0.0004L 7.1 7.0 0.0003L 0.0005L 0.0005L 0.0005L 0.0005L 0.0005L 0.0005L 0.0005L 0.0004L 0.012 0.012 0.004L 0.004L	mg/L	
<u> </u>	价铬	2025-09-27	0.004L	0.004L	mg/L	
	ווידוע	2025-09-28	0.004L	0.004L	mg/L	
۲4	硬度	2025-09-27	514	510	mg/L	
心	吹汉	2025-09-28	486	494	mg/L	

检测结果

报告编号 A2230677304105C

第10页共28页

检测结果:			0		(0)
44	Mire II	1# 11 ¥ 12	结	i果	34 12-
位	测项目	采样日期	第1次	第2次	单位
. K	2. 42. 亚八	2025-09-27	0.0003L	0.0003L	mg/L
<u>1</u>	军发酚	2025-09-28	0.0003L	0.0003L	mg/L
41	S I le thin	2025-09-27	0.231	0.298	mg/L
男	貳化物	2025-09-28	0.220	0.288	mg/L
	ha ha	2025-09-27	0.145	0.240	mg/L
	氨氮	2025-09-28	0.062	0.064	mg/L
,	of Lle thin	2025-09-27	115	114	mg/L
ञ	瓦化物	2025-09-28	114	115	mg/L
- 65 to-	/ar att:	2025-09-27	0.0002L	0.0002L	mg/L
	氯苯	2025-09-28	0.0002L	0.0002L	mg/L
9) "	≅ ∐e ll-lm	2025-09-27	0.001L	0.001L	mg/L
ř	氰化物	2025-09-28	0.001L	0.001L	mg/L
	-	2025-09-27	0.00004L	0.00004L	mg/L
	汞	2025-09-28	0.00004L	0.00004L	mg/L
ेश्रदेद दिर	7 M- FFI /-k-	2025-09-27	857	856	mg/L
行用	幹性固体	2025-09-28	881	第 2 次 0.0003L 0.0003L 0.298 0.288 0.240 0.064 114 115 0.0002L 0.001L 0.001L 0.001L 0.0004L 856 880 0.0003L 0.0003L 0.0003L 0.0003L 135 142 1.1 1.0 0 0 0.000004L	mg/L
	甲苯	2025-09-27	0.0003L	0.0003L	mg/L
	十 本	2025-09-28	0.0003L	0.0003L	mg/L
(1)	砷	2025-09-27	0.0003L	0.0003L	mg/L
	4中	2025-09-28	0.0003L	0.0003L	mg/L
T.		2025-09-27	0.003L	0.003L	mg/L
19	11.76.40	2025-09-28	0.003L	0.003L	mg/L
	流酸盐	2025-09-27	143	135	mg/L
(10	11.日文五亩.	2025-09-28	137	142	mg/L
+	毛氧量	2025-09-27	1.0	1.1	mg/L
木	七半里	2025-09-28	1.2	1.0	mg/L
G.	色度	2025-09-27	0	0	度
	巴皮	2025-09-28	0	0	度
±±:	光(a) せ	2025-09-27	0.000004L	0.000004L	mg/L
本	并(a)芘	2025-09-28	0.000004L	0.000004L	mg/L

检测结果

报告编号 A2230677304105C

第11页共28页

检测结果:			الع		100	/		(0)
检测项目		W.	采样日期		结果		N4 (-)-	
			本	円円捌	第1	次	第2次	单位
铁		202	5-09-27	0.0	2L	0.02L	mg/L	
	铅		2025-09-28		0.0	08	0.09	mg/L
	Ŀп		202	5-09-27	0.00	651	0.00153	mg/L
	拓		202	5-09-28	0.00	126	0.00110	mg/L
/*>	锌		202	5-09-27	0.0	65	0.071	mg/L
	并		202	5-09-28	0.0	78	0.072	mg/L
	锰	//	202	5-09-27	0.2	51	0.237	mg/L
	Tin.		202	5-09-28	0.2	43	0.227	mg/L
	镉		202	5-09-27	0.000	05L	0.00005L	mg/L
	物		202	5-09-28	0.000	05L	0.00005L	mg/L
) m	mかまと与		202	5-09-27	1.8	86	2.21	mg/L
1415	酸盐氮		2025-09-28		2.2	2.23 2.32		mg/L
羊品编号:			**		·			
(3)	检测项目		100	采样日	期		第1次	第2次
(6,2	1,1-二氯乙	烯	37)	2025-09	-27 HFR91613107		R91613107	HFR91613108
1,2-二氯乙	烯	1,2-二氯乙烯	(总量)	2025-09	27 HF		R91613107	HFR91613108
1,2-二氯乙	烯	反-1,2-二氯	【乙烯	2025-09	-09-27 HF		R91613107	HFR91613108
1,2-二氯乙	烯	顺式-1,2-二	氯乙烯	2025-09	-27 HF		R91613107	HFR91613108
(17)	pH 值	(1)		2025-09	-27 HF		R91613127	HFR91613128
	乙苯			2025-09	9-27 HF		R91613107	HFR91613108
二甲苯		二甲苯(总	总量)	2025-09	-27	HF	R91613107	HFR91613108
二甲苯		对/间二日	甲苯	2025-09	-27	HFR91613107		HFR91613108
二甲苯	-	邻二甲	苯	2025-09	-27	HF	R91613107	HFR91613108
亚硝酸盐氮		3")	2025-09-27		HFR91613083		HFR91613084	
	六价铬			2025-09	-27	HF	R91613075	HFR91613076
总硬度				2025-09	-27	HF	R91613119	HFR91613120
挥发酚			2025-09	-27	HF	R91613091	HFR91613092	
氟化物			2025-09	-27	HF	R91613087	HFR91613088	
	氨氮			2025-09	-27	HF	R91613079	HFR91613080
	氯化物			2025-09	-27	HF	R91613087	HFR91613088
-05	氯苯		-0-	2025-09	-27	HF	R91613107	HFR91613108

检测结果

报告编号 A2230677304105C

第 12 页共 28 页

样品编号:		10		
检测	项目	采样日期	第1次	第2次
氰化	と物	2025-09-27	HFR91613095	HFR91613096
尹	Ŕ	2025-09-27	HFR91613115	HFR91613116
溶解性	生固体	2025-09-27	HFR91613083	HFR91613084
甲	苯	2025-09-27	HFR91613107	HFR91613108
矿	#	2025-09-27	HFR91613115	HFR91613116
硝酸	盐氮	2025-09-27	HFR91613087	HFR91613088
硫化	と物	2025-09-27	HFR91613099	HFR91613100
硫酯		2025-09-27	HFR91613087	HFR91613088
耗氧	重量	2025-09-27	HFR91613123	HFR91613124
色	度	2025-09-27	HFR91613083	HFR91613084
苯并	(a)芘	2025-09-27	HFR91613111	HFR91613112
包包	失	2025-09-27	HFR91613103	HFR91613104
铂	n.	2025-09-27	HFR91613103	HFR91613104
包	辛	2025-09-27	HFR91613103	HFR91613104
铂	á C	2025-09-27	HFR91613103	HFR91613104
铅	Ŗ	2025-09-27	HFR91613103	HFR91613104
1,1-二3	氯乙烯	2025-09-28	HFR91613109	HFR91613110
1,2-二氯乙烯	1,2-二氯乙烯(总量)	2025-09-28	HFR91613109	HFR91613110
1,2-二氯乙烯	反-1,2-二氯乙烯	2025-09-28	HFR91613109	HFR91613110
1,2-二氯乙烯	顺式-1,2-二氯乙烯	2025-09-28	HFR91613109	HFR91613110
pН	值	2025-09-28	HFR91613129	HFR91613130
乙	苯	2025-09-28	HFR91613109	HFR91613110
二甲苯	二甲苯 (总量)	2025-09-28	HFR91613109	HFR91613110
二甲苯	对/间二甲苯	2025-09-28	HFR91613109	HFR91613110
二甲苯	邻二甲苯	2025-09-28	HFR91613109	HFR91613110
亚硝酯		2025-09-28	HFR91613085	HFR91613086
六份	介铬	2025-09-28	HFR91613077	HFR91613078
总硕	更度	2025-09-28	HFR91613121	HFR91613122
挥发	分	2025-09-28	HFR91613093	HFR91613094
氟化	L物	2025-09-28	HFR91613089	HFR91613090
氨	氮	2025-09-28	HFR91613081	HFR91613082
氯化	上物	2025-09-28	HFR91613089	HFR91613090

检测结果

报告编号 A2230677304105C

第 13 页共 28 页

W I 心 I	16	7	160
样品编号:			
检测项目	采样日期	第1次	第2次
氯苯	2025-09-28	HFR91613109	HFR91613110
氰化物	2025-09-28	HFR91613097	HFR91613098
汞	2025-09-28	HFR91613117	HFR91613118
溶解性固体	2025-09-28	HFR91613085	HFR91613086
甲苯	2025-09-28	HFR91613109	HFR91613110
砷	2025-09-28	HFR91613117	HFR91613118
硝酸盐氮	2025-09-28	HFR91613089	HFR91613090
硫化物	2025-09-28	HFR91613101	HFR91613102
硫酸盐	2025-09-28	HFR91613089	HFR91613090
耗氧量	2025-09-28	HFR91613125	HFR91613126
色度	2025-09-28	HFR91613085	HFR91613086
苯并(a)芘	2025-09-28	HFR91613113	HFR91613114
铁	2025-09-28	HFR91613105	HFR91613106
铝	2025-09-28	HFR91613105	HFR91613106
锌	2025-09-28	HFR91613105	HFR91613106
锰	2025-09-28	HFR91613105	HFR91613106
镉	2025-09-28	HFR91613105	HFR91613106

备注:

1.pH 值为现场检测。

2.结果有"L"表示未检出,其数值为该项目的检出限。

检测结果

报告编号 A2230677304105C

第 14 页共 28 页

表 3:

样品信息:								
样品类型	土壌		To:		(3)			
点位名称	项目区域上风向	S1	样品	状态	无异味、固态、浅棕、潮			
采样日期	2025-09-28	检测		日期	2025-09-2	29~2025-10-	20	
采样深度	0-20cm		经纬	度	E:117.589863° N:39.9 结果		982072°	
检测结果:		C*>		15		- C°		
(8)	检测项目	样品编	号	(35)	结果	(20)	单位	
(6)	汞	HFR91613	3002		0.067		mg/kg	
	六价铬	HFR91613	3003		ND		mg/kg	
	铜	HFR91613	3002		22		mg/kg	
40	铅	HFR91613	3002		30		mg/kg	
3)	砷	HFR91613	3002		7.98		mg/kg	
	镉	HFR91613	3002		0.10		mg/kg	
	镍	HFR91613	3002		24		mg/kg	
石	油烃(C10-C40)	HFR91613	3004	(1)	ND	(30)	mg/kg	
(6)	苯	HFR91613	3001	(6)	ND	(6)	mg/kg	
	甲苯	HFR91613	3001		ND		mg/kg	
	乙苯	HFR91613	3001		ND		mg/kg	
-0-	苯乙烯	HFR91613	3001		ND		mg/kg	
太	t(间)二甲苯	HFR91613	3001		ND		mg/kg	
	邻二甲苯	HFR91613	3001		ND		mg/kg	
	氯苯	HFR91613	3001		ND		mg/kg	
	1,2-二氯苯	HFR91613	3001		ND		mg/kg	
	1,4-二氯苯	HFR91613	3001	(3)	ND	(20)	mg/kg	
6	硝基苯	HFR91613	3004	(0,)	ND	(0,)	mg/kg	
	三氯甲烷	HFR91613	3001		ND		mg/kg	
	四氯化碳	HFR91613	3001		ND		mg/kg	
65	氯甲烷	HFR91613	3001		ND		mg/kg	
37)	二氯甲烷	HFR91613	3001		ND		mg/kg	
1,	,1-二氯乙烷	HFR91613	3001		ND		mg/kg	
1,	2-二氯乙烷	HFR91613	3001		ND		mg/kg	
1,1	1,1-三氯乙烷	HFR91613	3001		ND	/05	mg/kg	
1,1	1,2-三氯乙烷	HFR91613	3001	(4)	ND	(20)	mg/kg	

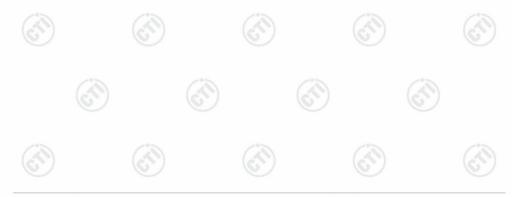
检测结果

报告编号 A2230677304105C

第 15 页共 28 页

检测结果:			
检测项目	样品编号	结果	单位
1,1,1,2-四氯乙烷	HFR91613001	ND	mg/kg
1,1,2,2-四氯乙烷	HFR91613001	ND	mg/kg
1,2-二氯丙烷	HFR91613001	ND	mg/kg
1,2,3-三氯丙烷	HFR91613001	ND	mg/kg
氯乙烯	HFR91613001	ND	mg/kg
1,1-二氯乙烯	HFR91613001	ND	mg/kg
顺-1,2-二氯乙烯	HFR91613001	ND	mg/kg
反-1,2-二氯乙烯	HFR91613001	ND	mg/kg
三氯乙烯	HFR91613001	ND	mg/kg
四氯乙烯	HFR91613001	ND	mg/kg
2-氯酚	HFR91613004	ND	mg/kg
苯胺	HFR91613005	ND	mg/kg
二噁英类总量#	HFR91613006	0.57	ng TEQ/k
萘	HFR91613004	ND	mg/kg
植	HFR91613004	ND	mg/kg
苯并(a)芘	HFR91613004	ND	mg/kg
苯并(a)蒽	HFR91613004	ND	mg/kg
苯并(b)荧蒽	HFR91613004	ND	mg/kg
苯并(k)荧蒽	HFR91613004	ND	mg/kg
二苯并(a,h)蒽	HFR91613004	ND	mg/kg
茚并(1,2,3-cd)芘	HFR91613004	ND	mg/kg

检测结果


报告编号 A2230677304105C

第 16 页共 28 页

样品信息:				(0)	
样品类型	土壤				
点位名称	项目区	区域上风向 S1	样品编号	HFR91613006	
检测结果:			The state of the s		
(())	检测项		实测质量浓度 (ρ _s)	毒性当量(T	EQ)质量浓度
	个立 次则 40.	H	ng/kg	I-TEF	ng TEQ/kg
		2,3,7,8-T ₄ CDF	0.7	×0.1	0.070
	-0.	1,2,3,7,8-P₅CDF	0.3	×0.05	0.015
		2,3,4,7,8-P ₅ CDF	0.3	×0.5	0.15
		1,2,3,4,7,8-H ₆ CDF	0.25	×0.1	0.025
	多氯代二苯	1,2,3,6,7,8-H ₆ CDF	0.27	×0.1	0.027
		2,3,4,6,7,8-H ₆ CDF	0.25	×0.1	0.025
		1,2,3,7,8,9-H ₆ CDF	0.14	×0.1	0.014
	6	1,2,3,4,6,7,8- H ₇ CDF	0.87	×0.01	0.0087
二噁英类#		1,2,3,4,7,8,9- H ₇ CDF	0.25	×0.01	0.0025
一带央关#		O ₈ CDF	2.5	×0.001	0.0025
		2,3,7,8-T ₄ CDD	0.1ND	×1	0.050
		1,2,3,7,8-P ₅ CDD	0.2	×0.5	0.10
	多氯代二苯	1,2,3,4,7,8- H ₆ CDD	0.17	×0.1	0.017
	并-对-二噁	1,2,3,6,7,8-H ₆ CDD	0.13	×0.1	0.013
	英	1,2,3,7,8,9-H ₆ CDD	0.08	×0.1	0.0080
	(e	1,2,3,4,6,7,8-H ₇ CDD	1.6	×0.01	0.016
	0	O ₈ CDD	29	×0.001	0.029
	二噁英类总	量(PCDDs+PCDFs)	-		0.57

备注: 1.实测质量浓度 (ρ_s): 二噁英类质量浓度测定值。

- 2.毒性当量因子(TEF):采用国际毒性当量因子 I-TEF 定义。
- 3.毒性当量(TEQ)质量浓度:折算为相当于 2,3,7,8-T₄CDD 的质量浓度。
- 4. "ND"表示未检出,数值表示检出限,计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算

检测结果

报告编号 A2230677304105C

第 17 页共 28 页

表 4:

衣 4: 样品信息:							
样品类型	土壌		75		7:5		
点位名称	项目区域下风向 S2	(e.	样品		犬态 无异味、固态、浅核		、潮
采样日期	2025-09-28		检测			9~2025-10-	100
采样深度	0-20cm		经纬	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		204° N:39.9	
检测结果:	5 200m		P.34. 11.7.	~	Littinose	201 1110717	02000
	检测项目	样品编号			结果	(20)	单位
6	汞	HFR91613	009		0.064	6	mg/kg
	六价铬	HFR91613	010		ND		mg/kg
	铜	HFR91613	009		28		mg/kg
70	铅	HFR91613	009		41		mg/kg
57	砷	HFR91613	009		2.43		mg/kg
	镉	HFR91613	009		0.24		mg/kg
	镍	HFR91613009			25		mg/kg
石泊	油烃(C10-C40)	HFR91613	011	(3)	ND	(3)	mg/kg
(6)	苯	HFR91613	008	(6)	ND	(67)	mg/kg
	甲苯	HFR91613	008		ND		mg/kg
	乙苯	HFR91613	008		ND		mg/kg
-07	苯乙烯	HFR91613	008		ND		mg/kg
对	(间)二甲苯	HFR91613	008		ND		mg/kg
	邻二甲苯	HFR91613	008		ND		mg/kg
	氯苯	HFR91613	008		ND		mg/kg
1	,2-二氯苯	HFR91613	008		ND		mg/kg
CA	,4-二氯苯	HFR91613	008	(21)	ND	(49)	mg/kg
(6)	硝基苯	HFR91613	011	(0,)	ND	(0,)	mg/kg
	三氯甲烷	HFR91613	008		ND		mg/kg
	四氯化碳	HFR91613	008		ND		mg/kg
(6)	氯甲烷	HFR91613	008		ND		mg/kg
37)	二氯甲烷	HFR91613	008		ND		mg/kg
	1-二氯乙烷	HFR91613	008		ND		mg/kg
1,	2-二氯乙烷	HFR91613	008		ND		mg/kg
1,1	,1-三氯乙烷	HFR91613	008	100	ND	100	mg/kg
1,1	,2-三氯乙烷	HFR91613	008	(4)	ND	(24)	mg/kg

检测结果

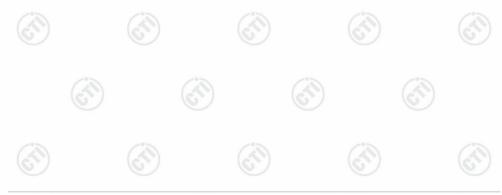
报告编号 A2230677304105C

第 18 页共 28 页

检测结果:			0	/
检测项目	样品编号	结果		单位
1,1,1,2-四氯乙烷	HFR91613008	ND		mg/kg
1,1,2,2-四氯乙烷	HFR91613008	ND		mg/kg
1,2-二氯丙烷	HFR91613008	ND	`)	mg/kg
1,2,3-三氯丙烷	HFR91613008	ND		mg/kg
氯乙烯	HFR91613008	ND		mg/kg
1,1-二氯乙烯	HFR91613008	ND	/*5	mg/kg
顺-1,2-二氯乙烯	HFR91613008	ND	(65)	mg/kg
反-1,2-二氯乙烯	HFR91613008	ND	6	mg/kg
三氯乙烯	HFR91613008	ND		mg/kg
四氯乙烯	HFR91613008	ND		mg/kg
2-氯酚	HFR91613011	ND		mg/kg
苯胺	HFR91613012	ND)	mg/kg
二噁英类总量#	HFR91613007	0.52		ng TEQ/kg
萘	HFR91613011	ND		mg/kg
	HFR91613011	ND	(%	mg/kg
苯并(a)芘	HFR91613011	ND	(6)	mg/kg
苯并(a)蒽	HFR91613011	ND		mg/kg
苯并(b)荧蒽	HFR91613011	ND		mg/kg
苯并(k)荧蒽	HFR91613011	ND		mg/kg
二苯并(a,h)蒽	HFR91613011	ND	(2)	mg/kg
茚并(1,2,3-cd)芘	HFR91613011	ND	/	mg/kg

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint \ call: 0755-33681700 \\ Complaint \ E-mail: complaint \ @cti-cert.com \\ Complaint \ Complaint \ E-mail: complaint \ Complaint \ Complaint \ E-mail: complaint \ Complaint$

检测结果


报告编号 A2230677304105C

第19页共28页

样品信息:		(6)		6	
样品类型	土壤				
点位名称	项目区	区域下风向 S2	样品编号	HFR91613007	
检测结果:					
(1)	检测项		实测质量浓度 (ρs)	毒性当量(T	EQ)质量浓度
	化沙里沙	(H	ng/kg	I-TEF	ng TEQ/kg
		2,3,7,8-T ₄ CDF	0.4	×0.1	0.040
	r°5	1,2,3,7,8-P ₅ CDF	0.3	×0.05	0.015
		2,3,4,7,8-P ₅ CDF	0.4	×0.5	0.20
		1,2,3,4,7,8-H ₆ CDF	0.30	×0.1	0.030
	多氯代二苯	1,2,3,6,7,8-H ₆ CDF	0.3	×0.1	0.030
		2,3,4,6,7,8-H ₆ CDF	0.4	×0.1	0.040
		1,2,3,7,8,9-H ₆ CDF	0.1ND	×0.1	0.0050
	6	1,2,3,4,6,7,8- H ₇ CDF	0.93	×0.01	0.0093
二噁英类#		1,2,3,4,7,8,9- H ₇ CDF	0.2	×0.01	0.0020
一带央关#		O ₈ CDF	1.0	×0.001	0.0010
		2,3,7,8-T ₄ CDD	0.1ND	×1	0.050
		1,2,3,7,8-P ₅ CDD	0.2ND	×0.5	0.050
	多氯代二苯	1,2,3,4,7,8- H ₆ CDD	0.12	×0.1	0.012
	并-对-二噁	1,2,3,6,7,8-H ₆ CDD	0.12	×0.1	0.012
	英	1,2,3,7,8,9-H ₆ CDD	0.12	×0.1	0.012
	(6	1,2,3,4,6,7,8-H ₇ CDD	0.83	×0.01	0.0083
		O ₈ CDD	4.4	×0.001	0.0044
	二噁英类总	量(PCDDs+PCDFs)			0.52

备注: 1.实测质量浓度(ρ_s): 二噁英类质量浓度测定值。

- 2.毒性当量因子(TEF):采用国际毒性当量因子 I-TEF 定义。
- 3.毒性当量(TEQ)质量浓度:折算为相当于 2,3,7,8-T₄CDD 的质量浓度。
- 4. "ND"表示未检出,数值表示检出限,计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint \ call: 0755-33681700 \\ Complaint \ E-mail: complaint \ @cti-cert.com \\ Complaint \ Complaint \ E-mail: complaint \ Complaint \ Complaint \ E-mail: complaint \ Complaint$

检测结果

报告编号 A2230677304105C

第 20 页共 28 页

表 5:

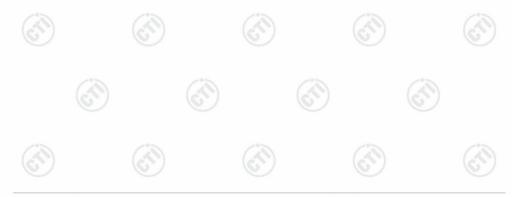
样品信息:							
样品类型	土壌		15.		(3)		1
点位名称	项目区域下风向	S3	样品	状态 无异味、固态、浅核		固态、浅棕	、潮
采样日期	2025-09-28		检测	日期	2025-09-	29~2025-10-	20
采样深度	0-20cm		经纬		E:117.59	5227° N:39.9	81342°
检测结果:							
(25)	检测项目	样品编	号		结果		单位
6	汞	HFR91613	3015	6	0.061	6	mg/kg
	六价铬	HFR91613	3016		ND		mg/kg
	铜	HFR91613	3015		30		mg/kg
20	铅	HFR91613	3015		34		mg/kg
5")	砷	HFR91613	3015		4.51		mg/kg
	镉	HFR91613	3015		0.20		mg/kg
	镍	HFR91613	HFR91613015		27		mg/kg
石泊	由烃(C10-C40)	HFR91613	HFR91613017		8	(3)	mg/kg
(6)	苯	HFR91613	HFR91613014		ND	(67)	mg/kg
	甲苯	HFR91613	HFR91613014		ND		mg/kg
	乙苯	HFR91613	HFR91613014		ND		mg/kg
.0	苯乙烯	HFR91613	3014		ND		mg/kg
对	(间)二甲苯	HFR91613	3014		ND		mg/kg
	邻二甲苯	HFR91613	3014		ND		mg/kg
	氯苯	HFR91613	3014		ND		mg/kg
1	,2-二氯苯	HFR91613	3014		ND		mg/kg
	,4-二氯苯	HFR91613	3014	(20)	ND	(20)	mg/kg
(0)	硝基苯	HFR91613	3017	(0,)	ND O		mg/kg
	三氯甲烷	HFR91613	HFR91613014		ND		mg/kg
	四氯化碳	HFR91613	3014		ND		mg/kg
Ti.	氯甲烷	HFR91613	3014		ND		mg/kg
37)	二氯甲烷	HFR91613	3014		ND		mg/kg
1,	1-二氯乙烷	HFR9161:	3014		ND		mg/kg
1,2	2-二氯乙烷	HFR91613	3014		ND		mg/kg
1,1	,1-三氯乙烷	HFR91613	3014		ND		mg/kg
1,1	,2-三氯乙烷	HFR91613	3014	(49)	ND	(30)	mg/kg

报告编号 A2230677304105C

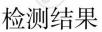
第 21 页共 28 页

检测结果:			0	/
检测项目	样品编号	结身	Ę	单位
1,1,1,2-四氯乙烷	HFR91613014	NE)	mg/kg
1,1,2,2-四氯乙烷	HFR91613014	NI	0.	mg/kg
1,2-二氯丙烷	HFR91613014	NI		mg/kg
1,2,3-三氯丙烷	HFR91613014	NE)	mg/kg
氯乙烯	HFR91613014	NI)	mg/kg
1,1-二氯乙烯	HFR91613014	NI) /°>	mg/kg
顺-1,2-二氯乙烯	HFR91613014	NE		mg/kg
反-1,2-二氯乙烯	HFR91613014	NI		mg/kg
三氯乙烯	HFR91613014	NI)	mg/kg
四氯乙烯	HFR91613014	NE)	mg/kg
2-氯酚	HFR91613017	NI		mg/kg
苯胺	HFR91613018	NI		mg/kg
二噁英类总量#	HFR91613013	0.4	8	ng TEQ/kg
萘	HFR91613017	NE)	mg/kg
崫	HFR91613017	NI NI		mg/kg
苯并(a)芘	HFR91613017	NI		mg/kg
苯并(a)蒽	HFR91613017	NE)	mg/kg
苯并(b)荧蒽	HFR91613017	NI)	mg/kg
苯并(k)荧蒽	HFR91613017	NI		mg/kg
二苯并(a,h)蒽	HFR91613017	NE		mg/kg
茚并(1,2,3-cd)芘	HFR91613017	NE		mg/kg

检测结果


报告编号 A2230677304105C

第 22 页共 28 页


样品信息:			(6)	6	
样品类型	土壤				
点位名称	项目区	区域下风向 S3	样品编号	HFR91613013	
检测结果:			The state of the s		
(6)	检测项		实测质量浓度(ρs)	毒性当量(T	EQ)质量浓度
	个立 次则 40.	LH .	ng/kg	I-TEF	ng TEQ/kg
		2,3,7,8-T ₄ CDF	0.09ND	×0.1	0.0045
	-0.	1,2,3,7,8-P ₅ CDF	0.2	×0.05	0.010
		2,3,4,7,8-P ₅ CDF	0.3	×0.5	0.15
		1,2,3,4,7,8-H ₆ CDF	0.62	×0.1	0.062
	多氯代二苯	1,2,3,6,7,8-H ₆ CDF	0.32	×0.1	0.032
		2,3,4,6,7,8-H ₆ CDF	0.37	×0.1	0.037
		1,2,3,7,8,9-H ₆ CDF	0.16	×0.1	0.016
		1,2,3,4,6,7,8- H ₇ CDF	2.9	×0.01	0.029
二噁英类#		1,2,3,4,7,8,9- H ₇ CDF	0.49	×0.01	0.0049
一"芯央矢#		O ₈ CDF	5.2	×0.001	0.0052
		2,3,7,8-T ₄ CDD	0.1ND	×1	0.050
		1,2,3,7,8-P ₅ CDD	0.1ND	×0.5	0.025
	多氯代二苯	1,2,3,4,7,8- H ₆ CDD	0.2	×0.1	0.020
	并-对-二噁	1,2,3,6,7,8-H ₆ CDD	0.12	×0.1	0.012
	英	1,2,3,7,8,9-H ₆ CDD	0.15	×0.1	0.015
	(e	1,2,3,4,6,7,8-H ₇ CDD	0.6	×0.01	0.0060
	0	O ₈ CDD	2.7	×0.001	0.0027
	二噁英类总	量(PCDDs+PCDFs)	-	-	0.48

备注: 1.实测质量浓度 (ρ_s): 二噁英类质量浓度测定值。

- 2.毒性当量因子(TEF):采用国际毒性当量因子 I-TEF 定义。
- 3.毒性当量(TEQ)质量浓度:折算为相当于 2,3,7,8-T₄CDD 的质量浓度。
- 4. "ND"表示未检出,数值表示检出限,计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算

ተለ ንሀባ ሊ

报告编号 A2230677304105C

CTI华测检测

第 23 页共 28 页

表 6

衣 0:				
检测方法及检出	限、仪器设备:			
样品类型	检测项目	检测标准(方法)名称	方法	仪器设备
任吅关至	型切べ口	及编号(含年号)	检出限	名称及型号
	色度	水质色度的测定(3 铂钴比色 法) GB/T 11903-1989	, 6	
	氨氮	水质复氮的测定纳氏试剂分 光光度法 HJ 535-2009	0.025mg/L	紫外可见分光光度计(UV) UV-1800PC
	pH 值	水质 pH 值的测定电极法 HJ 1147-2020	/	多参数水质分析仪 YSI proplus
	铅	水质 65 种元素的测定电感耦合等离子体质谱法 HJ 700-2014	0.00009mg/L	电感耦合等离子体质谱仪 (ICP-MS) NexION 1000
(2)	锌	水质 32 种元素的测定电感耦合等离子体发射光谱法 HJ 776-2015	0.004mg/L	电感耦合等离子体光谱仪 (ICP) 8300DV
地下水	镉	水质 65 种元素的测定电感耦合等离子体质谱法 HJ 700-2014	0.00005mg/L	电感耦合等离子体质谱仪 (ICP-MS) NexION 1000
	耗氧量	地下水质分析方法第 68 部分: 耗氧量的测定酸性高锰酸钾滴定法DZ/T 0064.68-2021	0.4mg/L	滴定管 10ml
6	总硬度	地下水质分析方法第 15 部分: 总硬度的测定乙二胺四乙酸二钠滴定法DZ/T 0064.15-2021	3.0mg/L	酸式滴定管 25ml
	溶解性固体	地下水质分析方法第9部分: 溶解性固体总量的测定重量 法 DZ/T 0064.9-2021	1	分析天平 ME204
	氟化物	水质无机阴离子 (F-、Cl-、	0.006mg/L	
/	氯化物	NO ₂ -、Br-、NO ₃ -、PO ₄ ³⁻ 、SO ₃ ²⁻ 、	0.007mg/L	离子色谱仪(IC)
(6	硫酸盐	SO4 ²⁻)的测定离子色谱法 HJ 84-2016	0.018mg/L	ICS-1100

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint \ call: 0755-33681700 \\ Complaint \ E-mail: complaint \ @cti-cert.com \\ Complaint \ Complaint \ E-mail: complaint \ Complaint \ Complaint \ E-mail: complaint \ Complaint$

报告编号 A2230677304105C

第 24 页共 28 页

检测方法及检	出限、仪器设备:	(6)	(6)	(0)
样品类型	检测项目	检测标准(方法)名称 及编号(含年号)	方法 检出限	仪器设备 名称及型号
(P)	甲苯		0.0003mg/L	
	乙苯	水质挥发性有机物的测定吹	0.0003mg/L	气相色谱质谱联用仪
	二甲苯	扫捕集/气相色谱-质谱法 HJ 639-2012	邻二甲苯: 0.0002mg/L	(GCMS) OP-2010Ultra
	一十本	HJ 639-2012	对/间二甲苯: 0.0005mg/L	QP-2010Oltra
			0.0003mg/L	(6)
	亚硝酸盐氮	水质亚硝酸盐氮的测定分光 光度法 GB/T 7493-1987	0.003mg/L	紫外可见分光光度计(UV UV-7504
	汞	水质汞、砷、硒、铋和锑的测 定原子荧光法 HJ 694-2014	0.00004mg/L	双通道原子荧光光谱仪 BAF-2000
地下水	六价铬	地下水质分析方法第 17 部分: 总铬和六价铬量的测定二苯碳酰二肼分光光度法DZ/T 0064.17-2021	0.004mg/L	紫外可见分光光度计(UV UV-1800PC
	铁	水质 32 种元素的测定电感耦	0.02mg/L	电感耦合等离子体光谱仪
	锰	合等离子体发射光谱法 HJ 776-2015	0.004mg/L	(ICP) 8300DV
	砷	水质汞、砷、硒、铋和锑的测 定原子荧光法 HJ 694-2014	0.0003mg/L	双通道原子荧光光谱仪 BAF-2000
	氯苯		0.0002mg/L	
	1,1-二氯乙烯	水质挥发性有机物的测定吹	0.0004mg/L	气相色谱质谱联用仪
		扫捕集/气相色谱-质谱法	顺式-1,2-二氯乙烯: 0.0004mg/L	(GCMS)
	1,2-二氯乙烯	НЈ 639-2012	反-1,2-二氯乙烯: 0.0003mg/L	QP-2010Ultra

检测结果

报告编号 A2230677304105C

第 25 页共 28 页

		1.0 %		1.00 % 1
检测方法及检出	限、仪器设备:			
样品类型	检测项目	检测标准(方法)名称 及编号(含年号)	方法 检出限	仪器设备 名称及型号
	苯并(a)芘	水质多环芳烃的测定液液萃 取和固相萃取高效液相色谱 法 HJ 478-2009	0.000004mg/L	高效液相色谱仪(HPLC) LC-20A
(挥发酚	水质挥发酚的测定 4-氨基安替比林分光光度法(方法 1 萃取分光光度法) HJ 503-2009	0.0003mg/L	紫外可见分光光度计(UV) UV-1800PC
地下水	硝酸盐氮	水质无机阴离子(F-、Cl-、 NO ₂ -、Br-、NO ₃ -、PO ₄ 、SO ₃ 、 SO ₄)的測定离子色谱法 HJ 84-2016	0.004mg/L	离子色谱仪(IC) ICS-1100
	氰化物	水质氰化物的测定流动注射 分光光度法 HJ 823-2017	0.001mg/L	流动注射分析仪 BDFIA-8000C
	硫化物	水质硫化物的测定亚甲基蓝 分光光度法(8.2.2 "酸化-蒸馏 -吸收"法(30mm 比色皿)) HJ 1226-2021	0.003mg/L	紫外可见分光光度计(UV) UV-1800PC
3)	崫	土壤和沉积物半挥发性有机 物的测定气相色谱-质谱法 HJ 834-2017	0.1mg/kg	气相色谱质谱仪 GCMS-QP2020 NX
土壤	铅	土壤和沉积物铜、锌、铅、镍、 铬的测定火焰原子吸收分光 光度法 HJ 491-2019	10mg/kg	原子吸收分光光度计(AAS AA7000F
工場	镉	土壤质量铅、镉的测定石墨炉 原子吸收分光光度法 GB/T 17141-1997	0.01mg/kg	原子吸收光谱仪 AA900Z
(镍	土壤和沉积物铜、锌、铅、镍、 铬的测定火焰原子吸收分光 光度法 HJ 491-2019	3mg/kg	原子吸收分光光度计(AAS) AA7000F

检测结果

报告编号 A22306773041050

第 26 页共 28 页

检测方法及检	出限、仪器设备:			(0)
样品类型	检测项目	检测标准(方法)名称 及编号(含年号)	方法 检出限	仪器设备 名称及型号
	石油烃(C10-C40)	土壤和沉积物石油烃 (C ₁₀ -C ₄₀)的测定气相色谱法 HJ 1021-2019	6mg/kg	气相色谱仪(GC) GC-2010Plus
	苯	土壤和沉积物挥发性有机物	0.0019mg/kg	气相色谱质谱联用仪
	甲苯	的测定吹扫捕集/气相色谱-质	0.0013mg/kg	(GCMS)
	乙苯	谱法	0.0012mg/kg	OP-2010Ultra
	苯乙烯	НЈ 605-2011	0.0011mg/kg	QF-2010Citta
	汞	土壤和沉积物汞、砷、硒、铋、 锑的测定微波消解/原子荧光 法 HJ 680-2013	0.002mg/kg	双通道原子荧光光谱仪 BAF-2000
	六价铬	土壤和沉积物六价铬的测定 碱溶液提取-火焰原子吸收分 光光度法 HJ 1082-2019	0.5mg/kg	原子吸收分光光度计(AAS AA7000F
土壌	砷	土壤和沉积物汞、砷、硒、铋、 锑的测定微波消解/原子荧光 法 HJ 680-2013	0.01mg/kg	双通道原子荧光光谱仪 BAF-2000
	铜	土壤和沉积物铜、锌、铅、镍、 铬的测定火焰原子吸收分光 光度法 HJ 491-2019	1mg/kg	原子吸收分光光度计(AAS AA7000F
	对(间)二甲苯		0.0012mg/kg	(2)
	邻二甲苯	土壤和沉积物挥发性有机物	0.0012mg/kg	- 气相色谱质谱联用仪
	氯苯	的测定吹扫捕集/气相色谱-质	0.0012mg/kg	(GCMS)
	1,2-二氯苯	谱法	0.0015mg/kg	QP-2010Ultra
	1,4-二氯苯	- HJ 605-2011	0.0015mg/kg	
	硝基苯	土壤和沉积物半挥发性有机 物的测定气相色谱-质谱法 HJ 834-2017	0.09mg/kg	气相色谱质谱仪 GCMS-QP2020 NX

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint \ call: 0755-33681700 \\ Complaint \ E-mail: complaint \ @cti-cert.com \\ Complaint \ Complaint \ E-mail: complaint \ Complaint \ Complaint \ E-mail: complaint \ Complaint$

第 27 页共 28 页

	6.//	(8,8.)	(6,0)	(6,2)
检测方法及检	出限、仪器设备:			
样品类型	检测项目	检测标准(方法)名称	方法	仪器设备
件吅天堂	位列列列	及编号(含年号)	检出限	名称及型号
	三氯甲烷		0.0011mg/kg	
	四氯化碳	(6,2)	0.0013mg/kg	
	氯甲烷		0.0010mg/kg	
	二氯甲烷	1	0.0015mg/kg	
	1,1-二氯乙烷	· · ·	0.0012mg/kg	
	1,2-二氯乙烷		0.0013mg/kg	
	1,1,1-三氯乙烷		0.0013mg/kg	
	1,1,2-三氯乙烷	土壤和沉积物挥发性有机物	0.0012mg/kg	E In to Me of Me of Me
	1,1,1,2-四氯乙烷	的测定吹扫捕集/气相色谱-质	0.0012mg/kg	气相色谱质谱联用仪
	1,1,2,2-四氯乙烷	谱法	0.0012mg/kg	(GCMS)
	1,2-二氯丙烷	НЈ 605-2011	0.0011mg/kg	QP-2010Ultra
	1,2,3-三氯丙烷		0.0012mg/kg	
	氯乙烯		0.0010mg/kg	
	1,1-二氯乙烯 顺-1,2-二氯乙烯		0.0010 mg/kg	
土壤			0.0013mg/kg	
	反-1,2-二氯乙烯		0.0014mg/kg	
	三氯乙烯		0.0012mg/kg	
	四氯乙烯		0.0014mg/kg	
	2-氯酚	土壤和沉积物半挥发性有机 物的测定气相色谱-质谱法 HJ 834-2017	0.06mg/kg	气相色谱质谱仪 GCMS-QP2020 NX
	苯胺	土壤和沉积物 13 种苯胺类和 2 种联苯胺类化合物的测定液 相色谱-三重四极杆质谱法 HJ 1210-2021	0.002mg/kg	液质联用仪 Xevo TQ-s
	二噁英类#	土壤和沉积物二噁英类的测 定同位素稀释高分辨气相色 谱-高分辨质谱法 HJ 77.4-2008	' E	高分辨磁质谱系统 AutoSpec Premier

检测结果

报告编号 A2230677304105C

第 28 页共 28 页

		检测标准(方法)名称	方法	仪器设备
样品类型	检测项目			F-00
11 1111/2 222	IMP4 51P4	及编号(含年号)	检出限	名称及型号
	萘	土壤和沉积物半挥发性有机 物的测定气相色谱-质谱法 HJ 834-2017	0.09mg/kg	
	苯并(a)芘		0.1mg/kg	气相色谱质谱仪 GCMS-QP2020 NX
	苯并(k)荧蒽		0.1mg/kg	
土壤	二苯并(a,h)蒽		0.1mg/kg	
(苯并(b)荧蒽		0.2mg/kg	
	苯并(a)蒽		0.1mg/kg	(25)
	茚并(1,2,3-cd)芘		0.1mg/kg	

注:"押"表示该项目不在本实验室资质范围内,经客户同意分包至苏州市华测检测技术有限公司实验室,且在其资质范围内,CMA 证书编号为 221020340516。

报告结束

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint \ call: 0755-33681700 \\ Complaint \ E-mail: complaint \ @cti-cert.com \\ Complaint \ Complaint \ E-mail: complaint \ Complaint \ Complaint \ E-mail: complaint \ Complaint$

附件 10-3 废气二噁英检测报告

CTI华测检测

检测报告

报告编号 A2250688736101C

第 1 页 共 18 页

委托单位 安徽佳先功能助剂股份有限公司

受检单位 安徽佳先功能助剂股份有限公司

受检单位地址 安徽省蚌埠市淮上区沫河口精细化工园银湖路 280 号

样品类型 工业废气(有组织)

检测类别 委托检测

苏州市华测检测技术才限公司检验检测专用章

No.222098C8AA

Q/CTI LD-SUCEDD-0701-F06

版本/版次: 2.1

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint \ call: 0755-33681700 \\ Complaint \ E-mail: complaint \ @cti-cert.com \\ Complaint \ Compla$

报告说明

报告编号 A2250688736101C

第 2 页 共 18 页

- 1. 本报告不得涂改、增删,无签发人签字无效。
- 2. 本报告无检验检测专用章、骑缝章无效。
- 3. 未经 CTI 书面批准,不得部分复制检测报告。
- 4. 本报告未经同意不得作为商业广告使用。
- 现场运行设备设施参数由客户提供。标准限值由客户提供;分析方法、频次与标准不一致时,检测结果作参考使用。
- 6. 除客户特别声明并支付样品管理费,所有超过标准规定时效期的样品均不再留样。
- 7. 对本报告有疑议,请在收到报告10天之内与本公司联系。
- 8. 未加盖 CMA 章的报告仅用作科研、内部质量控制等,不具有对社会的证明作用。

苏州市华测检测技术有限公司

联系地址: 江苏省苏州市相城区澄阳路 3286 号

邮政编码: 215134

采 样 人 员: 梁通通、任俞燃

任命燃 ダ

签发人姓名: 王晓琛

Tab God

制:

₩ 45 FT #B

发日期: 2025/10/20

Q/CTI LD-SUCEDD-0701-F06

版本/版次: 2.1

检测结果

报告编号 A2250688736101C

第 3 页 共 18 页

附:检测布点图

说明: ◎工业废气有组织采样点

版本/版次: 2.1

Q/CTI LD-SUCEDD-0701-F06

(cr

检测结果

报告编号 A2250688736101C

第 4 页 共 18 页

表1:

w.			
样品二	二噁英类总量结果汇总表		
序号	样品类型	检测点位 2025-09-25	二噁英类总量(PCDDs+PCDFs)
1	工业废气(有组 织)	危废焚烧炉尾气排放口 DA002 (第一次)	0.0021ng TEQ/m ³
2	工业废气(有组织)	危废焚烧炉尾气排放口 DA002 (第二次)	0.0026ng TEQ/m³
3	工业废气(有组织)	危废焚烧炉尾气排放口 DA002 (第三次)	0.0017ng TEQ/m³
130	-	(平均值)	0.0021ng TEQ/m ³
羊品二	二噁英类总量结果汇总表	E) (ci))	(35)
序号	样品类型	检测点位 2025-09-26	二噁英类总量(PCDDs+PCDFs)
4	工业废气(有组织)	危废焚烧炉尾气排放口 DA002 (第一次)	0.0019ng TEQ/m³
5	工业废气(有组织)	危废焚烧炉尾气排放口 DA002 (第二次)	0.0020ng TEQ/m³
6	工业废气(有组织)	危废焚烧炉尾气排放口 DA002 (第三次)	0.0023ng TEQ/m³
0.1	(c)	(平均值)	0.0021ng TEO/m³

检测结果

报告编号 A2250688736101C

第 5 页 共 18 页

表 2:

样品信息:		**	0	>		75
样品类型	工业	変气(有组织)	(1)	(25)		(20)
采样点名称	危废	焚烧炉尾气排放口 DA002	样品状态 完好			
采样时间	2025-	09-25	检测日期	2025-1	0-13~2025-	10-16
样品编号	SUR	01628001				
检测结果:				-	(40	\
	67	(6.)	实测质量浓	换算质量浓	毒性当量	(TEQ)质量
	检测工	页目	度 (ρ _s)	度(ρ)	i	浓度
			ng/m³	ng/m³	I-TEF	ng TEQ/m
	-	2,3,7,8-T ₄ CDF	0.0017	0.0015	×0.1	0.00015
	(6	1,2,3,7,8-P ₅ CDF	0.0009	0.0008	×0.05	0.000040
	多氯代二苯并呋喃	2,3,4,7,8-P ₅ CDF	0.0016	0.0015	×0.5	0.00075
		1,2,3,4,7,8-H ₆ CDF	0.0013	0.0012	×0.1	0.00012
		1,2,3,6,7,8-H ₆ CDF	0.0010	0.0009	×0.1	0.000090
		2,3,4,6,7,8-H ₆ CDF	0.0011	0.0010	×0.1	0.00010
		1,2,3,7,8,9-H ₆ CDF	0.0005ND	0.0005ND	×0.1	0.000025
		1,2,3,4,6,7,8- H ₇ CDF	0.0030	0.0027	×0.01	0.000027
二噁英类		1,2,3,4,7,8,9- H ₇ CDF	0.0003ND	0.0003ND	×0.01	0.0000015
一地央矢		O ₈ CDF	0.0029	0.0026	×0.001	0.0000026
	(6	2,3,7,8-T ₄ CDD	0.0007ND	0.0006ND	×1	0.00030
		1,2,3,7,8-P ₅ CDD	0.001ND	0.001ND	×0.5	0.00025
	多氯代二苯	1,2,3,4,7,8- H ₆ CDD	0.0009	0.0008	×0.1	0.000080
	并-对-二噁	1,2,3,6,7,8-H ₆ CDD	0.0008	0.0007	×0.1	0.000070
	英	1,2,3,7,8,9-H ₆ CDD	0.0006	0.0005	×0.1	0.000050
		1,2,3,4,6,7,8-H ₇ CDD	0.0028	0.0025	×0.01	0.000025
		O ₈ CDD	0.0096	0.0087	×0.001	0.0000087
	二噁英类点	总量(PCDDs+PCDFs)	_			0.0021

- 备注: 1.实测质量浓度 (ρ_s): 二噁英类质量浓度测定值。 2.换算质量浓度 (ρ): 二噁英类质量浓度的基准含氧量换算值。
 - 3.毒性当量因子(TEF):采用国际毒性当量因子 I-TEF 定义。
 - 4.毒性当量(TEQ)质量浓度: 折算为相当于 2,3,7,8-T₄CDD 的质量浓度。
 - 5."ND"表示未检出,数值表示检出限,计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算

Q/CTI LD-SUCEDD-0701-F06

版本/版次: 2.1

检测结果

报告编号 A2250688736101C

第 6 页 共 18 页

表 3:

质控信息:	725	-07	72	/%
	检测项目	(25)	回收率%	回收率范围
	¹³ C-23478-PeCDF		98.0	70%~130%
采样内标	¹³ C-123478-HxCDF		104.0	70%~130%
本件的你	¹³ C-1234789-HpCDF		83.6	70%~130%
	¹³ C-123478-HxCDD		92.3	70%~130%
(0)	¹³ C-2378-TCDF		67.7	24%~169%
	¹³ C-12378-PeCDF		57.7	24%~185%
	¹³ C-123678-HxCDF		69.7	28%~130%
	¹³ C-123789-HxCDF		89.2	29%~147%
净化内标	¹³ C-1234678-HpCDF	(0)	52.7	28%~143%
伊化内协	¹³ C-2378-TCDD		62.9	25%~164%
	¹³ C-12378-PeCDD		50.5	25%~181%
-0	¹³ C-123678-HxCDD		70.4	28%~130%
(3)	¹³ C-1234678-HpCDD		44.2	23%~140%
	¹³ C-OCDD		43.1	17%~157%

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint \ call: 0755-33681700 \\ Complaint \ E-mail: complaint \ @cti-cert.com \\ Complaint \ Complaint \ E-mail: complaint \ Complaint \ E-mail: complaint \ Complaint \ E-mail: complaint \ Compla$

检测结果

报告编号 A2250688736101C

第 7 页 共 18 页

表 4:

样品信息:		-0-	0			25
样品类型	工业	2废气(有组织)				(20)
采样点名称	危废	受焚烧炉尾气排放口 DA002	样品状态	完好	F	
采样时间	202	5-09-25	检测日期	2025-1	10-13~2025-	10-16
样品编号	SUI	R91628002				
检测结果:	100			-	(4)	\
\		(6.)	实测质量浓	换算质量浓	毒性当量	(TEQ)质量
	检测	项目	度 (ρ _s)	度(ρ)	1	浓度
			ng/m³	ng/m³	I-TEF	ng TEQ/m³
(3)	1	2,3,7,8-T ₄ CDF	0.0040	0.0037	×0.1	0.00037
	(1,2,3,7,8-P ₅ CDF	0.0022	0.0021	×0.05	0.00010
		2,3,4,7,8-P ₅ CDF	0.0022	0.0021	×0.5	0.0010
	多氯代二苯并呋喃	1,2,3,4,7,8-H ₆ CDF	0.0014	0.0013	×0.1	0.00013
		1,2,3,6,7,8-H ₆ CDF	0.0010	0.0009	×0.1	0.000090
		2,3,4,6,7,8-H ₆ CDF	0.0007	0.0007	×0.1	0.000070
		1,2,3,7,8,9-H ₆ CDF	0.0004ND	0.0004ND	×0.1	0.000020
		1,2,3,4,6,7,8- H ₇ CDF	0.0023	0.0021	×0.01	0.000021
二噁英类		1,2,3,4,7,8,9- H ₇ CDF	0.0005	0.0005	×0.01	0.0000050
一带夹矢	/	O ₈ CDF	0.0026	0.0024	×0.001	0.0000024
	1	2,3,7,8-T ₄ CDD	0.0008ND	0.0007ND	×1	0.00035
		1,2,3,7,8-P ₅ CDD	0.001ND	0.001ND	×0.5	0.00025
	多氯代二苯	1,2,3,4,7,8- H ₆ CDD	0.0006	0.0006	×0.1	0.000060
	并-对-二噁	1,2,3,6,7,8-H ₆ CDD	0.0005	0.0005	×0.1	0.000050
	英	1,2,3,7,8,9-H ₆ CDD	0.0004ND	0.0004ND	×0.1	0.000020
		1,2,3,4,6,7,8-H ₇ CDD	0.0028	0.0026	×0.01	0.000026
		O ₈ CDD	0.0067	0.0063	×0.001	0.0000063
	二噁英类	总量(PCDDs+PCDFs)				0.0026

- 备注: 1.实测质量浓度 (ρ_s): 二噁英类质量浓度测定值。 2.换算质量浓度 (ρ): 二噁英类质量浓度的基准含氧量换算值。
 - 3.毒性当量因子(TEF):采用国际毒性当量因子 I-TEF 定义。
 - 4.毒性当量(TEQ)质量浓度: 折算为相当于 2,3,7,8-T₄CDD 的质量浓度。
 - 5."ND"表示未检出,数值表示检出限,计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算

Q/CTI LD-SUCEDD-0701-F06

版本/版次: 2.1

检测结果

报告编号 A2250688736101C

第 8 页 共 18 页

表 5:

质控信息:	· ·		72	/93
	检测项目	(20)	回收率%	回收率范围
	¹³ C-23478-PeCDF		105.5	70%~130%
采样内标	¹³ C-123478-HxCDF		107.3	70%~130%
木件内怀	¹³ C-1234789-HpCDF		84.1	70%~130%
	¹³ C-123478-HxCDD		91.9	70%~130%
(6.)	¹³ C-2378-TCDF		60.8	24%~169%
	¹³ C-12378-PeCDF		53.9	24%~185%
	¹³ C-123678-HxCDF		62.7	28%~130%
	¹³ C-123789-HxCDF		92.3	29%~147%
净化内标	¹³ C-1234678-HpCDF	(6)	47.5	28%~143%
评化内你	¹³ C-2378-TCDD		56.0	25%~164%
	¹³ C-12378-PeCDD		49.1	25%~181%
	¹³ C-123678-HxCDD		63.7	28%~130%
	¹³ C-1234678-HpCDD		40.0	23%~140%
	¹³ C-OCDD		39.4	17%~157%

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

+

检测结果

报告编号 A2250688736101C

第 9 页 共 18 页

表 6:

样品信息:						
样品类型	工业	废气(有组织)	(1)	(25)		(2)
采样点名称	危废	焚烧炉尾气排放口 DA002	样品状态 完好			
采样时间	2025	-09-25	检测日期	2025-1	10-13~2025-	10-16
样品编号	SUR	91628003				
检测结果:				2)	(40)	\
	6	(0.)	实测质量浓	换算质量浓	毒性当量	(TEQ)质量
	检测	项目	度 (ρ _s)	度(ρ)		浓度
			ng/m³	ng/m³	I-TEF	ng TEQ/m³
	/	2,3,7,8-T ₄ CDF	0.0028	0.0026	×0.1	0.00026
	(1,2,3,7,8-P ₅ CDF	0.0016	0.0015	×0.05	0.000075
	多氯代二苯并呋喃	2,3,4,7,8-P ₅ CDF	0.0007ND	0.0006ND	×0.5	0.00015
		1,2,3,4,7,8-H ₆ CDF	0.0013	0.0012	×0.1	0.00012
		1,2,3,6,7,8-H ₆ CDF	0.0010	0.0009	×0.1	0.000090
		2,3,4,6,7,8-H ₆ CDF	0.0012	0.0011	×0.1	0.00011
		1,2,3,7,8,9-H ₆ CDF	0.0005ND	0.0005ND	×0.1	0.000025
		1,2,3,4,6,7,8- H ₇ CDF	0.0039	0.0036	×0.01	0.000036
二噁英类		1,2,3,4,7,8,9- H ₇ CDF	0.0004	0.0004	×0.01	0.0000040
一心光天	(O ₈ CDF	0.0034	0.0031	×0.001	0.0000031
	1	2,3,7,8-T ₄ CDD	0.0009ND	0.0008ND	×1	0.00040
		1,2,3,7,8-P ₅ CDD	0.0007	0.0006	×0.5	0.00030
	多氯代二苯	1,2,3,4,7,8- H ₆ CDD	0.0008	0.0007	×0.1	0.000070
	并-对-二噁	1,2,3,6,7,8-H ₆ CDD	0.0006ND	0.0006ND	×0.1	0.000030
	英	1,2,3,7,8,9-H ₆ CDD	0.0006ND	0.0006ND	×0.1	0.000030
		1,2,3,4,6,7,8-H ₇ CDD	0.0032	0.0030	×0.01	0.000030
		O ₈ CDD	0.014	0.013	×0.001	0.000013
	二噁英类	总量(PCDDs+PCDFs)	_			0.0017

- 备注: 1.实测质量浓度 (ρ_s): 二噁英类质量浓度测定值。 2.换算质量浓度 (ρ): 二噁英类质量浓度的基准含氧量换算值。
 - 3.毒性当量因子(TEF):采用国际毒性当量因子 I-TEF 定义。
 - 4.毒性当量(TEQ)质量浓度: 折算为相当于 2,3,7,8-T₄CDD 的质量浓度。
 - 5."ND"表示未检出,数值表示检出限,计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算

Q/CTI LD-SUCEDD-0701-F06

版本/版次: 2.1

检测结果

报告编号 A2250688736101C

第 10 页 共 18 页

表 7:

质控信息:	· ·		72	/15
	检测项目	(20)	回收率%	回收率范围
	¹³ C-23478-PeCDF		96.4	70%~130%
采样内标	¹³ C-123478-HxCDF		101.0	70%~130%
木件內你	¹³ C-1234789-HpCDF		82.3	70%~130%
	¹³ C-123478-HxCDD		88.6	70%~130%
(0.)	¹³ C-2378-TCDF		70.3	24%~169%
	¹³ C-12378-PeCDF		62.4	24%~185%
	¹³ C-123678-HxCDF		77.2	28%~130%
	¹³ C-123789-HxCDF		88.7	29%~147%
净化内标	¹³ C-1234678-HpCDF	(6)	58.0	28%~143%
评化内协	¹³ C-2378-TCDD		64.7	25%~164%
	¹³ C-12378-PeCDD		54.9	25%~181%
	¹³ C-123678-HxCDD		76.6	28%~130%
	¹³ C-1234678-HpCDD		48.5	23%~140%
	¹³ C-OCDD		47.3	17%~157%

检测结果

报告编号 A2250688736101C

第 11 页 共 18 页

表 8:

样品信息:						
样品类型	工业	废气(有组织)	(7)	(20)		(2)
采样点名称	危废	焚烧炉尾气排放口 DA002	样品状态 完好			
采样时间	2025	-09-26	检测日期	2025-	10-13~2025-	10-16
样品编号	SUR	91628004		*		
检测结果:	(40)			2)	(40)	\
	6	(0)	实测质量浓	换算质量浓	毒性当量	(TEQ)质量
	检测	页目	度 (ρ _s)	度(ρ)	ì	浓度
			ng/m³	ng/m³	I-TEF	ng TEQ/m³
(i)	/	2,3,7,8-T ₄ CDF	0.0016	0.0016	×0.1	0.00016
	(«	1,2,3,7,8-P ₅ CDF	0.001	0.001	×0.05	0.000050
	多氯代二苯	2,3,4,7,8-P ₅ CDF	0.001	0.001	×0.5	0.00050
		1,2,3,4,7,8-H ₆ CDF	0.0011	0.0011	×0.1	0.00011
		1,2,3,6,7,8-H ₆ CDF	0.0010	0.0010	×0.1	0.00010
		2,3,4,6,7,8-H ₆ CDF	0.0014	0.0014	×0.1	0.00014
		1,2,3,7,8,9-H ₆ CDF	0.0003ND	0.0003ND	×0.1	0.000015
		1,2,3,4,6,7,8- H ₇ CDF	0.0032	0.0032	×0.01	0.000032
二噁英类		1,2,3,4,7,8,9- H ₇ CDF	0.0003ND	0.0003ND	×0.01	0.0000015
一心光头		O ₈ CDF	0.0057	0.0056	×0.001	0.0000056
		2,3,7,8-T ₄ CDD	0.0008ND	0.0008ND	×1	0.00040
		1,2,3,7,8-P ₅ CDD	0.0007ND	0.0007ND	×0.5	0.00018
	多氯代二苯	1,2,3,4,7,8- H ₆ CDD	0.0008ND	0.0008ND	×0.1	0.000040
	并-对-二噁	1,2,3,6,7,8-H ₆ CDD	0.0008ND	0.0008ND	×0.1	0.000040
	英	1,2,3,7,8,9-H ₆ CDD	0.0008ND	0.0008ND	×0.1	0.000040
		1,2,3,4,6,7,8-H ₇ CDD	0.0028	0.0028	×0.01	0.000028
		O ₈ CDD	0.010	0.010	×0.001	0.000010
	二噁英类	总量(PCDDs+PCDFs)	-		<u></u>	0.0019

- 备注: 1.实测质量浓度 (ρ_s): 二噁英类质量浓度测定值。 2.换算质量浓度 (ρ): 二噁英类质量浓度的基准含氧量换算值。
 - 3.毒性当量因子(TEF):采用国际毒性当量因子 I-TEF 定义。
 - 4.毒性当量(TEQ)质量浓度: 折算为相当于 2,3,7,8-T₄CDD 的质量浓度。
 - 5."ND"表示未检出,数值表示检出限,计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算

检测结果

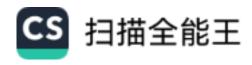
报告编号 A2250688736101C

第 12 页 共 18 页

表 9:

质控信息:		-07	7'5	/15
	检测项目	(2/2)	回收率%	回收率范围
	¹³ C-23478-PeCDF		94.7	70%~130%
采样内标	¹³ C-123478-HxCDF		100.1	70%~130%
木件內你	¹³ C-1234789-HpCDF		85.5	70%~130%
	¹³ C-123478-HxCDD		91.0	70%~130%
(6.)	¹³ C-2378-TCDF		60.8	24%~169%
	¹³ C-12378-PeCDF		54.9	24%~185%
	¹³ C-123678-HxCDF		66.4	28%~130%
	¹³ C-123789-HxCDF		91.1	29%~147%
净化内标	¹³ C-1234678-HpCDF	(6)	51.1	28%~143%
伊化内你	¹³ C-2378-TCDD		56.4	25%~164%
	¹³ C-12378-PeCDD		48.9	25%~181%
	¹³ C-123678-HxCDD		65.7	28%~130%
	¹³ C-1234678-HpCDD		43.8	23%~140%
	¹³ C-OCDD		45.6	17%~157%

检测结果


报告编号 A2250688736101C

第 13 页 共 18 页

表 10:

样品信息:			07			
样品类型	工	业废气(有组织)	(1)	(20)		
采样点名称	危	废焚烧炉尾气排放口 DA002	样品状态	完好		
采样时间	20	25-09-26	检测日期	2025-	10-13~2025-	10-16
样品编号	SU	R91628005		-		
检测结果:	(1)			9)	(4)	\
	6	(0.)	实测质量浓	换算质量浓	毒性当量	(TEQ)质量
	检测	则项目	度 (ρ _s)	度(ρ)	1	浓度
			ng/m³	ng/m³	I-TEF	ng TEQ/m³
		2,3,7,8-T ₄ CDF	0.0024	0.0024	×0.1	0.00024
		1,2,3,7,8-P ₅ CDF	0.002	0.002	×0.05	0.00010
		2,3,4,7,8-P ₅ CDF	0.001ND	0.001ND	×0.5	0.00025
		1,2,3,4,7,8-H ₆ CDF	0.0010	0.0010	×0.1	0.00010
/	多氯代二	末 1,2,3,6,7,8-H ₆ CDF	0.0009	0.0009	×0.1	0.000090
	并呋喃	2,3,4,6,7,8-H ₆ CDF	0.0008	0.0008	×0.1	0.000080
		1,2,3,7,8,9-H ₆ CDF	0.0004ND	0.0004ND	×0.1	0.000020
		1,2,3,4,6,7,8- H ₇ CDF	0.0027	0.0026	×0.01	0.000026
二噁英类		1,2,3,4,7,8,9- H ₇ CDF	0.0004	0.0004	×0.01	0.0000040
一些央矢		O ₈ CDF	0.0021	0.0021	×0.001	0.0000021
		2,3,7,8-T ₄ CDD	0.0008ND	0.0008ND	×1	0.00040
		1,2,3,7,8-P ₅ CDD	0.002ND	0.002ND	×0.5	0.00050
	多氯代二	末 1,2,3,4,7,8- H ₆ CDD	0.0006ND	0.0006ND	×0.1	0.000030
	并-对-二项	1,2,3,6,7,8-H ₆ CDD	0.0008	0.0008	×0.1	0.000080
	英	1,2,3,7,8,9-H ₆ CDD	0.0006ND	0.0006ND	×0.1	0.000030
		1,2,3,4,6,7,8-H ₇ CDD	0.0020	0.0020	×0.01	0.000020
		O ₈ CDD	0.010	0.010	0.010 ×0.001	
	二噁英差	た总量(PCDDs+PCDFs)	_			0.0020

- 备注: 1.实测质量浓度 (ρ_s): 二噁英类质量浓度测定值。 2.换算质量浓度 (ρ): 二噁英类质量浓度的基准含氧量换算值。
 - 3.毒性当量因子(TEF):采用国际毒性当量因子 I-TEF 定义。
 - 4.毒性当量(TEQ)质量浓度: 折算为相当于 2,3,7,8-T₄CDD 的质量浓度。
 - 5."ND"表示未检出,数值表示检出限,计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算

检测结果

报告编号 A2250688736101C

第 14 页 共 18 页

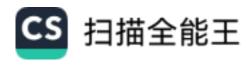
表 11:

质控信息:	/°>	107	7.5	/05
	检测项目	(20)	回收率%	回收率范围
	¹³ C-23478-PeCDF		92.0	70%~130%
采样内标	¹³ C-123478-HxCDF		102.0	70%~130%
本件的你	¹³ C-1234789-HpCDF		82.7	70%~130%
	¹³ C-123478-HxCDD		91.5	70%~130%
6.	¹³ C-2378-TCDF		65.3	24%~169%
	¹³ C-12378-PeCDF		56.5	24%~185%
	¹³ C-123678-HxCDF		71.2	28%~130%
	¹³ C-123789-HxCDF		89.1	29%~147%
净化内标	¹³ C-1234678-HpCDF	(0)	53.6	28%~143%
开化内你	¹³ C-2378-TCDD		60.3	25%~164%
	¹³ C-12378-PeCDD		48.1	25%~181%
	¹³ C-123678-HxCDD		71.4	28%~130%
	¹³ C-1234678-HpCDD		44.0	23%~140%
	¹³ C-OCDD		42.5	17%~157%

检测结果

报告编号 A2250688736101C

第 15 页 共 18 页


表 12:

样品信息:		-05	0	~		735
样品类型	工业	废气(有组织)	(1)	(20)		(20)
采样点名称	危废	焚烧炉尾气排放口 DA002	样品状态	完好		
采样时间	2025	-09-26	检测日期	2025-	10-13~2025-	10-16
样品编号	SUR	91628006				
检测结果:	(1)			-	(4)	\
1		(0.)	实测质量浓	换算质量浓	毒性当量	(TEQ)质量
	检测	项目	度 (ρ _s)	度(ρ)	ì	浓度
			ng/m³	ng/m³	I-TEF	ng TEQ/m
	/	2,3,7,8-T ₄ CDF	0.0025	0.0025	×0.1	0.00025
	(1,2,3,7,8-P ₅ CDF	0.001	0.001	×0.05	0.000050
	1	2,3,4,7,8-P ₅ CDF	0.001	0.001	×0.5	0.00050
		1,2,3,4,7,8-H ₆ CDF	0.0017	0.0017	×0.1	0.00017
,	多氯代二苯	1,2,3,6,7,8-H ₆ CDF	0.0011	0.0011	×0.1	0.00011
	并呋喃	2,3,4,6,7,8-H ₆ CDF	0.0015	0.0015	×0.1	0.00015
		1,2,3,7,8,9-H ₆ CDF	0.0005ND	0.0005ND	×0.1	0.000025
		1,2,3,4,6,7,8- H ₇ CDF	0.0028	0.0028	×0.01	0.000028
二噁英类		1,2,3,4,7,8,9- H ₇ CDF	0.0005ND	0.0005ND	×0.01	0.0000025
一地央矢	(O ₈ CDF	0.004	0.004	×0.001	0.0000040
	(2,3,7,8-T ₄ CDD	0.001ND	0.001ND	×1	0.00050
		1,2,3,7,8-P ₅ CDD	0.001ND	0.001ND	×0.5	0.00025
	多氯代二苯	1,2,3,4,7,8- H ₆ CDD	0.0013	0.0013	×0.1	0.00013
	并-对-二噁	1,2,3,6,7,8-H ₆ CDD	0.0008ND	0.0008ND	×0.1	0.000040
	英	1,2,3,7,8,9-H ₆ CDD	0.0008ND	0.0008ND	×0.1	0.000040
		1,2,3,4,6,7,8-H ₇ CDD	0.0031	0.0031	×0.01	0.000031
		O ₈ CDD	0.014	0.014	0.014 ×0.001	
	二噁英类	总量(PCDDs+PCDFs)	-			0.0023

- 备注: 1.实测质量浓度 (ρ_s): 二噁英类质量浓度测定值。 2.换算质量浓度 (ρ): 二噁英类质量浓度的基准含氧量换算值。
 - 3.毒性当量因子(TEF):采用国际毒性当量因子 I-TEF 定义。
 - 4.毒性当量(TEQ)质量浓度: 折算为相当于 2,3,7,8-T₄CDD 的质量浓度。
 - 5."ND"表示未检出,数值表示检出限,计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算

Q/CTI LD-SUCEDD-0701-F06

版本/版次: 2.1

检测结果

报告编号 A2250688736101C

第 16 页 共 18 页

表 13:

质控信息:				
(M)	检测项目	(25)	回收率%	回收率范围
	¹³ C-23478-PeCDF		94.4	70%~130%
采样内标	¹³ C-123478-HxCDF		102.4	70%~130%
木件內你	¹³ C-1234789-HpCDF		82.6	70%~130%
	¹³ C-123478-HxCDD		91.5	70%~130%
(0.)	¹³ C-2378-TCDF		63.0	24%~169%
	¹³ C-12378-PeCDF		55.1	24%~185%
	¹³ C-123678-HxCDF		70.8	28%~130%
	¹³ C-123789-HxCDF		88.4	29%~147%
净化内标	¹³ C-1234678-HpCDF	(6)	52.9	28%~143%
伊化内你	¹³ C-2378-TCDD		57.4	25%~164%
	¹³ C-12378-PeCDD		47.9	25%~181%
	¹³ C-123678-HxCDD		68.0	28%~130%
	¹³ C-1234678-HpCDD		42.9	23%~140%
	¹³ C-OCDD		44.0	17%~157%

Q/CTI LD-SUCEDD-0701-F06

版本/版次: 2.

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint \ call: 0755-33681700 \\ Complaint \ E-mail: complaint \ @cti-cert.com \\ Complaint \ Complaint \ E-mail: complaint \ Complaint \ E-mail: complaint \ Complaint \ E-mail: complaint \ Compla$

检测结果

报告编号 A2250688736101C

第 17 页 共 18 页

表 14:

样品类型	日 読い配入4	检测标准(方法)名称	方法	仪器设备
杆前失型	检测项目	及编号(含年号)	检出限	名称及型号
工业废气(有组织)	二噁英类	环境空气和废气 二噁英类的 测定 同位素稀释高分辨气相 色谱-高分辨质谱法 HJ 77.2-2008		高分辨磁质谱系统 AutoSpec Premier

报告结束

附录

报告编号 A2250688736101C

第 18 页 共 18 页

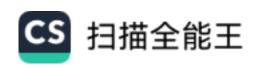
附录: 工业废气(有组织)烟气参数

样品编号	烟温℃	流速 m/s	大气压 kPa	截面 m ²	含湿量%	含氧量%	烟气流量 m³/h	标干流量 m³/h
SUR916280 01	48.1	3.1	101.5	1.7671	8.6	10.0	19658	15292
SUR916280 02	51.9	3.0	101.4	1.7671	12.9	10.3	19085	13976
SUR916280 03	50.8	3.1	101.4	1.7671	9.7	10.2	19658	14985
SUR916280 04	46.4	2.6	101.7	1.7671	9.3	10.9	16477	12810
SUR916280 05	48.2	2.4	101.6	1.7671	12.5	10.8	15268	11385
SUR916280 06	50.3	2.0	101.6	1.7671	9.5	10.9	12723	9741

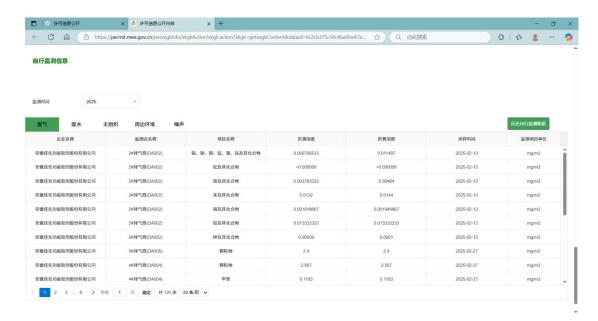
附录结击

附件 11 化学品管理台账

安徽佳先功能助剂股份有限公司 化学品危险性鉴定分类管理台账


统计日期: 2025年5月15日

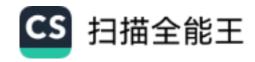
序号	名称	成分信息	类型	数量 (吨/ 年)	理化特性参数	是否 是危 险化 学品	危险性分类	是否列入《 危险化 学品目录》	鉴定分类报告	鉴定机构
1	甲醇	甲醇 (CAS No:67-56-1) 99%	原(輔)料	1765. 2	素气圧(kPa): 13.33 (21.2°C) 沸点(°C): 64.8 闭杯闪点(°C): 11	是	易燃液体,类别2; 急性毒性-经口,类别3; 急性毒性-经皮,类别3; 急性毒性-吸入,类别3; 特异性,配器官毒性-一次接触,类别1	是	按照《目录》分类	
2	甲醇	甲醇 (CAS No:67-56-1) 99%	中间产品	6913	素气压(kPa): 13.33 (21.2°C) 沸点(°C): 64.8 闭杯闪点(°C): 11	是	易燃液体,类别2; 急性毒性-经口,类别3; 急性毒性-经皮,类别3; 急性毒性-吸入,类别3; 特异性靶器官毒性-一次接触,类别1	是	按照《目录》分类	
3	对甲苯磺酸	对甲苯磺酸 (CAS No: 6192-52-5) 99%	原(辅)料	46	蒸气压(kPa): 无资料 沸点(℃): 140° C (2.67kPa) 闭杯闪点(℃): 无资料	是	皮肤腐蚀/刺激,类别1 严重眼损伤/眼刺激,类别1	是	按照《目录》分类	
4	苯甲酸甲酯	苯甲酸甲酯 (CAS No:93-58-3) 99%	中间产品	2000	蒸气压(kPa): 13.33 (21.2℃) 沸点(℃): 64.8 闭杯闪点(℃): 82.8	是	严重眼损伤/眼刺激,类别2	是	按照《目录》分类	
5	甲醇钠	甲醇钠 (CAS No: 124-41-4) 99%	原(辅)料	6334	蒸气压(kPa): 无资料 沸点(℃): >450 闭杯闪点(℃): 无意义	是	自热物质和混合物,类别1 皮肤腐蚀/刺激,类别1B 严重眼损伤/眼刺激,类别1	是	按照《目录》分类	
6	二甲苯	二甲苯 (CAS No:95-47-6) 99%	原(辅)料	420	蒸气压(kPa): 1.33 (32℃) 沸点(℃): 135 闭杯闪点(℃): 30	是	易燃液体,类别3 皮肤腐蚀/刺激,类别2	是	按照《目录》分类	


7	二甲苯	二甲苯 (CAS No:95-47-6) 99%	中间产品	14286	蒸气压(kPa): 1.33 (32℃) 沸点(℃): 135 闭杯闪点(℃): 30	是	易燃液体,类别3 皮肤腐蚀/刺激,类别2	是	按照《目录》分类
8	甲苯	甲苯 (CAS No: 108-88-3) 99%	原(辅)料	650	蒸气压(kPa): 4.89(30℃) 沸点(℃): 110.6 闭杯闪点(℃): 4	是	易燃液体,类别2 皮肤腐性/刺藏,类别2 吸入危害,类别1 生殖毒性,类别2	是	按照《目录》分类
9	甲苯	甲苯 (CAS No: 108-88-3) 99%	中间产品	12000	蒸气压(kPa): 4.89(30℃) 沸点(℃): 110.6 闭杯闪点(℃): 4	是	易燃液体,类别2 皮肤腐蚀/刺藏,类别2 吸入危害,类别1 生殖毒性,类别2	是	按照《目录》分类
10	盐酸	盐酸 (CAS No:7647-01-0) 31%	原(辅)料	18683	蒸气压(kPa): 30.66 (21℃) 湯点(℃): 108.6 (20%) 闭杯闪点(℃): 无意义	是	皮肤腐蚀/刺激,类别1B 严重眼损伤/眼刺激,类别1	是	按照《目录》分类
11	氮气 (压缩的)	氨气(压缩的) (CAS No: 7727-37-9) 99. 2%	原(辅)料	-	蒸气压(kPa): 1026.42 (−173°C) 沸点(°C): −195.6 闭杯闪点(°C): 无资料	是	加压气体	是	按照《目录》分类
12	液碱	液碱 (CAS No:1310-73-2) 99%	原(辅)料	2250	蒸气压(kPa): 0.13 (739℃) 沸点(℃): 1390 闭杯闪点(℃): 无意义	是	皮肤腐蚀/刺激,类别IA 严重眼损伤/眼刺激,类别I	是	按照《目录》分类
13	柴油	柴油 (CAS No:/) 99%	原(辅)料	200	蒸气压(kPa): 无资料 沸点(℃): 180-360 闭杯闪点(℃): 60-90	분	易燃液体,类别3	是	按照《目录》分类
14	天然气	天然气 (CAS No:8006-14-2) 95%	原(辅)料	600000 (立 方)	蒸气压(kPa): 53.32 (-168.8 ℃) 沸点(℃): -161.4 闭杯闪点(℃): -218	是	易燃气体,类别1	是	按照《目录》分类
15	乙苯	乙苯 (CAS No: 100-41-4) 99%	原(輔)料	7040	蓋气压(kPa): 1.33 (25.9℃) 沸点(℃): 136.2 闭杯闪点(℃): 15	是	易燃液体,类别2 致癌性,类别2 特异性靶器官毒性-反复接触,类别2 吸入危害,类别1	是	按照《目录》分类
16	乙苯	乙苯 (CAS No: 100-41-4) 99%	中间产品	3028, 8	差气压(kPa): 1.33 (25.9℃) 沸点(℃): 136.2 闭杯闪点(℃): 15	是	易燃液体,类别2 致癌性,类别2 特异性靶器官毒性-反复接触,类别2 吸入危害,类别1	是	按照《目录》分类

17	异丁醇	异丁醇 (CAS No:78-83-1) 99%	原(辅)料	3043, 75	素气压(kPa): 1.17(20℃) 湯点(℃): 107.9 闭杯闪点(℃): 28	是	易燃液体,类别3 皮肤腐蚀/刺激,类别2 严重眼损伤眼刺激,类别1 特异性靶器官毒性:一大接触,类别3(呼吸逆刺激 、麻醉效应)	是	按照《目录》分类
18	异丁醇	异丁醇 (CAS No:78-83-1) 99%	中间产品	2356	蒸气压(kPa): 1.17(20℃) 沸点(℃): 107.9 闭杯闪点(℃): 28	是	易燃液体,类别3 皮肤腐蚀,刺激,类别2 严重眼损伤,眼刺激,类别1 特异性靶器盲毒性,一次接触,类别3(呼吸道刺激 、麻醉效应)	是	按照《目录》分类
19	正丁醇	正丁醇 (CAS No:71-36-3) 99%	原 (輔) 料	7564. 32	悪气压(kPa): 0.58(20℃) 沸点(℃): 117 闭杯闪点(℃): 29	是	易燃液体,类别3 皮肤腐蚀,刺激,类别2 严重眼损伤,眼刺激,类别1 特异性配器盲毒性—一大接触,类别3(呼吸道刺激 、麻醉效应)	是	按照《目录》分类
20	正丁醇	正丁醇 (CAS No:71-36-3) 99%	中间产品	3430	蒸气圧(kPa): 0.58(20℃) 沸点(℃): 117 闭杯闪点(℃): 29	是	易燃液体,类形3 皮肤腐蚀,刺激,类形2 严重眼报伤,眼刺激,类别1 特异性职器官毒性.一	是	按照《目录》分类
21	正庚烷	正庚烷 (CAS No: 142-82-5) 99%	原(輔)料	21. 37	悪气圧(kPa); 5.33 (22.3℃) 沸点(℃); 98.5 闭杯闪点(℃); −4℃	是	易燃液体, 英別2 皮肤腐蚀/刺激, 英別2 特异性服器高輪性-一次接触, 英別3(麻醉效应) 吸入危害, 英別1 危害水生环境-急性危害, 英別1 危害水生环境-崇性, 大朋名	是	按照《目录》分类
22	正庚烷	正庚烷 (CAS No: 142-82-5) 99%	中间产品	25787	悪气压(kPa): 5.33 (22.3℃) 沸点(℃): 98.5 闭杯闪点(℃): −4℃	是	易燃液体, 英别2 皮肤腐蚀, 刺激, 类别2 特异性积器官者性—— 状接触, 类别3 (麻醉效应) 吸入危害, 类别1 鬼害水生环境, 急性急害, 类别1 鬼害水生环境, 长期急害, 类别1	是	按照《目录》分类
23	四氯化钛	四象化铁 (CAS No: 7550-45-0) 99%	原(辅)料	2790	蒸气压(kPa): 1.3(21.3℃) 沸点(℃): 136.4 闭杯闪点(℃): 无资料	是	皮肤腐蚀/刺激,类别IB 严重眼损伤/眼刺激,类别I	是	按照《目录》分类

24	四氟化锆	四氟化锆 (CAS No:10026-11-6) 99%	原(辅)料	730. 13	蒸气压(kPa); 0,13(190°C) 沸点(°C); 331 (升华) 闭杯闪点(°C); 无意义	是	皮肤腐蚀/刺激,类别IC 严重眼损伤/眼刺激,类别1	是	按照《目录》分类	
25	液氨	液氨 (CAS No: 7664-41-7) 99%	原(辅)料	1211. 11	蒸气压(kPa): 506.62(4.7℃) 沸点(℃): -33.5 闭杯闪点(℃): 无资料	是	易燃气体,类别2 加压气体 急性毒性-吸入,类别3* 皮肤腐蚀/刺激,类别1B	是	按照《目录》分类	
26	钛酸正丁酯	钛酸正丁酯 (CAS No: 5593-70-4) 99%	产品	5000	闭杯闪点(°C): 53.5	是	易燃气体,类别3	否		应急管理部化 学品登记中心
27	锆酸正丁酯	错酸正丁酯 (CAS No: 1071-76-7) 80% 正丁醇 (CAS No: 71-36-3) 20%	产品	1500	闭杯闪点(℃): 45	是	易燃气体,类别3 皮肤腐蚀/刺激,类别2 产量眼损伤,眼刺激,类别1 特异性乾毒性—一次接触,类别3 (呼须道刺激 、飛酵效应)	否		应急管理部化 学品登记中心

附件 12 自行监测结果公示截图


建设项目工程竣工环境保护"三同时"验收登记表

填表单位(盖章):安徽华测检测技术有限公司 填表人(签字):

项目经办人(签字):

			立、皿十/・ ノ	1 013 12 015	13/17/2	7 7	******		<u> </u>					77 / \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
	项目名称	年新增 20	00 吨 SBM 项目			项目代码			/		菱	建设地点	安徽省蚌埠	阜市淮上区泳	k河口园区	精细化工园镇	浸湖路 280 号
	行业类别(分类管理名录)	C2661 化	学试剂和助剂制造; N	N7724-1 危险废物		建设性质		□新	建 ☑扩建	□技术	改造		项目厂区中心:	经度/纬度	东经 117	°35′9.6″/北纬	32°58′58.8″
	设计生产能力	年产 2000	吨 SBM			实际生产能力	1	年产	2000 吨 SBN	М		·	环评单位		合肥 公司	市斯康环境和 	4技咨询有限
i [环评文件审批机关	蚌埠市生活	态环境局			审批文号		蚌环	许〔2022〕2	23 号			环评文件	烂型	环评	报告书	
建	开工日期	一期: 202	22 年 9 月、二期: 202	24年4月		竣工日期		一期:	: 2022年10	月、二	期: 2024	年9月	排污许可证	正申领时间	2024	4年9月18日	1
建设工程	环保设施设计单位	/				环保设施施工	 単位	/					本工程排泡	亏许可证编号	} 9134	103007885527	319001V
程	验收单位	安徽佳先过	功能助剂股份有限公司	ij		环保设施监测	单位		: 安徽天晟 ³ :安徽华测				验收监测	寸工况	/		
	投资总概算 (万元)	2000.5				环保投资总概算 (万元)		660	660					(%)	33%		
	实际总投资	2000.5				实际环保投资	(万元)	660					所占比例	(%)	33%	ı	
	废水治理(万元)	0	废气治理 (万元)	560	噪声治理(7	5元) 30	固	体废物治	建(万元)	50	4	录化及生态	&(万元)	/	其他	. (万元)	20
	新增废水处理设施能力	/			新增废气处理	里设施能力	/				年平	均工作时	7200h				
	运营单位		/		运营单位统-	一社会信用代码	(或组织机	[构代码)	/		验收	时间		2 年 12 月一 5 年 9—10 月		月	
	污染物	原有排放 量(1)		本期工程允许 排放浓度(3)	本期工程 产生量(4)	本期工程自 身削减量(5)	1	明工程实 本期工 排放量(6) 排放总			期工程 老"削减		全厂实际排 放总量(9)	全厂核定 放总量(1		评衡替代 量(11)	排放增减 量(12)
	废水						4.39	97					28.854				
污茧	化学需氧量		57	500										13.7304			
物扌	氨氮		1.10	30										2.4766			
放过																	
标与总量																	
控制	二氧化硫		<3	100					0.234					0.334			
し 火 通	MOI /		3.6	30													
设项	〔 工业粉 尘		1.6	120					2.46				0.507	3.944			
目) 填)	氮氧化物		96	300					0.844				8.208	14.444			
'	工业固体废物						0	,									+0
	与项目有关 的其他特征 VOCs 污染物								2.366				3.492	15.22985	5		

注: 1、排放增减量: (+)表示增加, (-)表示减少。2、(12)=(6)-(8)-(11), (9)=(4)-(5)-(8)-(11)+(1)。3、计量单位:废水排放量——万吨/年;废水污染物排放量——吨/年;废气排 放量——万标立方米/年,废气污染物排放量——吨/年,工业固体废物排放量——万吨/年,水污染物排放浓度——亳克/升,气污染物排放浓度——亳克/立方米。

